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Chapter 1

Rigid Body Motion

1.1 Position

1.2 Rotation in Plane

Figure 1.1:

We have:

R0
1 = [x0

1|y01] =
[
x1.x0 y1.x0

x1.y0 y1.y0

]
(1.1)

From Figure:

x0
1 =

[
cos θ
sin θ

]
, y01 =

[
− sin θ
cos θ

]
(1.2)

R0
1 =

[
cos θ − sin θ
sin θ cos θ

]
(1.3)

Properties of Rotation Matrix

R1
0 = (R0

1)
T

(R0
1)

T = (R0
1)

−1
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6 CHAPTER 1. RIGID BODY MOTION

1.3 Rotation in 3D
We have:

R0
1 = [x0

1|y01|z01 ] =

x1.x0 y1.x0 z1.x0

x1.y0 y1.y0 z1.y0
x1.z0 y1.z0 z1.z0

 (1.4)

1.3.1 Rotation about z

R0
1 =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 = Rz,θ (1.5)

1.3.2 Rotation about x

Rx,θ =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 (1.6)

1.3.3 Rotation about y

Ry,θ =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (1.7)



Chapter 2

Robotic Manipulator Kinematic

In robotic manipulator, we are interest in position of robot’s end effector. It is a mapping
from joint space to task space.

2.1 Kinematic Chain
A robot manipulator with n joints will have n + 1 links, since each joint connects two
links. We number the joints from 1 to n, and we number the links from 0 to n, starting
from the base. By this convention, joint i connects link i− 1 to link i. We will consider
the location of joint i to be fixed with respect to link i − 1. When joint i is actuated,
link i moves. Therefore, link 0 (the first link or base) is fixed, and does not move when
the joints are actuated.

Joint Variable We assume that each joint has 1 DOF. Thus we have joint variable
parameter as:

qi =

{
θi for revolute joint
di for prismatic joint

}
Homogeneous transformation matrix is the function of joint variable:

Hi = Hi(qi) (2.1)

Than we have our transformation matrix:

T i
j =


Hi+1Hi+2...Hj−1Hj

I
(T i

j )
−1


if i < j
if i = j
if i > j

(2.2)
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8 CHAPTER 2. ROBOTIC MANIPULATOR KINEMATIC

Homogeneous Transformation Matrix

H =

[
R0

n O0
n

0 1

]
(2.3)

Position and orientation of end effector in inertial frame is given by:

T 0
n = H1(q1)...Hn(qn) =

[
R0

1 O0
1

0 1

]
...

[
Rn

n−1 On
n−1

0 1

]
(2.4)

Each component of transformation matrix are:

Ri
j = Ri

i+1...R
j−1
j

Oi
j = Oi

j−1 +Ri
j−1O

j−1
j

(2.5)

2.2 Danavit-Hartenberg Convention
In the convention, the transformation matrix H can be represent as a product 4 basic
transformations. An arbitrary homogeneous transformation matrix can be characterized
by six numbers, three numbers to specify the fourth column of the matrix and three Euler
angles to specify the upper left 3 × 3 rotation matrix. In the DH representation, there
are only four parameters. How is this possible? Yes, by choice of the origin and the
coordinate axes, it is possible to cut down the number of parameters needed from six to
four.

Hi = Rotz,θiTransz,diTransx,aiRotx,αi

=


cθi −sθi 0 0
sθi cθi 0 0
0 0 1 0
0 0 0 1



1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1



1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1



1 0 0 0
0 cαi −sαi 0
0 sαi cαi 0
0 0 0 1



=


cθi −sθicαi sθisαi aicθi
sθi cθicαi −cθisαi aisθi
0 sαi cαi di
0 0 0 1


(2.6)

Where:

• ai link length

• αi link twist

• di link offset

• θi joint angle

2.3 Two Revolute Joint Plannar

2.3.1 Forward Kinematic with Geometrical Approach

Figure here
The coordinate of the end effector are:

x = a1 cos θ1 + a2 cos(θ1 + θ2)

y = a1 sin θ1 + a2 sin(θ1 + θ2)
(2.7)
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Rotation We can get a rotation matrix from frame 2 to frame 0 by:[
x2.x0 y2.x0

x2.y0 y2.y0

]
=

[
cos(θ1 + θ2) − sin(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2)

]
(2.8)

2.3.2 Inverse Kinematic with Geometrical Approach

From some trigonometry stuff, we can get inverse kinematic. But in robot with more
joint, it is not wise to use this approach since the robot can have more to infinite solution
(redundant robot). For our Two Revolute Joint Plannar, we have:

θ2 = tan−1(
±
√
1−D2

D
)

θ1 = tan−1(y/x)− tan−1(
a2 sin θ2

a1 + a2 cos θ2
)

(2.9)

2.3.3 Velocity Kinematic

Relation of tool velocity and joint velocity with respect to time. From:

ẋ(θ) =
n∑

i=1

∂x

∂θi

∂θi
∂t

=
n∑

i=1

∂x

∂θi
θ̇i(t) =

∂x

∂θ1
θ̇1(t) +

∂x

∂θ2
θ̇2(t) + ...+

∂x

∂θn
θ̇n(t) (2.10)

We get:

∂x

∂θ1
= −a1 sin θ1 − a2 sin(θ1 + θ2)

∂x

∂θ2
= 0− a2 sin(θ1 + θ2)

∂y

∂θ1
= a1 cos θ1 + a2 cos(θ1 + θ2)

∂y

∂θ2
= 0 + a2 cos(θ1 + θ2)

(2.11)

We get: [
ẋ
ẏ

]
=

[
−a1 sin θ1 − a2 sin(θ1 + θ2) −a2 sin(θ1 + θ2)
a1 cos θ1 + a2 cos(θ1 + θ2) a2 cos(θ1 + θ2)

] [
θ̇1
θ̇2

]
(2.12)

Than we may write the about equation as:

ẋ = Jθ̇ (2.13)

Because of relationship of linear velocity ẋ to joint velocity θ̇ is linear by Jacobian Matrix
J , it is conceptually simple to find inverse Jacobian.

Inverse Jacobian

θ̇ = J−1ẋ

J−1 =
1

det(J)
adj(J)

J−1 =
1

a1a2 sin θ2

[
a2 cos(θ1 + θ2) a2 sin(θ1 + θ2)

−a cos θ1 − a2 cos(θ1 + θ2) −a sin θ1 − a2 sin(θ1 + θ2)

] (2.14)
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If we have a look at the term 1
a1a2 sin θ2

, we see that if θ2 = 0 → sin θ2 = 0, π. This make
J has no inverse which is said to be Singularity Matrix. Take a look at the figure:

Figure Here
The robot cannot move to direction of −x because it is block by arm link. And we

always want to avoid this situation when do planning.

2.3.4 Forward Kinematic with DH Approach

Figure here

DH Table
Link ai αi di θi

1 a1 0 0 θ1
1 a2 0 0 θ2

The transformation matrices are:

T 0
1 = H1

T 0
2 = H1H2 =


cθ1θ2 −sθ1θ2 0 a1cθ1 + a2cθ1θ2
sθ1θ2 cθ1θ2 0 a1sθ1 + a2sθ1θ2
0 0 1 0
0 0 0 1


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