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Chapter 1

Transfer Function

Transfer Function is the ratio of Laplace Transform of Output of the system to the Laplace
Transform of Input of the system, when all the initial condition are assumed to be zero.
(Very important that if it is not zero then the system is not Linear Time Invariant)(We
can not take a Laplace Transform of a nonlinear system). Let:

• x(t) is Input of the system

• y(t) is Output of the system

• h(t) is the system

We have:
y(t) = x(t) ∗ h(t) (1.1)

Taking Laplace Transform, We get:

Y (s) = X(s) ∗H(s) (1.2)

By convolution property:

H(s) =
Y (s)

X(s)
(1.3)

1.1 Example of Determine a Transfer Function
System 1 Determine a Transfer Function of a system below:

d2y(t)

dt2
+ 3

dy(t)

dt
+ 2y(t) = x(t)

Solution We have:

• x(t) is Input of the system

• y(t) is Output of the system

Taking Laplace Transform of the system:

L[d
2y(t)

dt2
+ 3

dy(t)

dt
+ 2y(t)] = L[x(t)]

7



8 CHAPTER 1. TRANSFER FUNCTION

We get:

L[d
2y(t)

dt2
] = s2Y (s)− sY (0−)− y′(0−)

L[3dy(t)
dt

] = 3[sY (s)− y(0)]

L[2y(t)] = 2Y (s)

L[X(t)] = X(s)

s2Y (s)− sY (0−)− y′(0−) + 3[sY (s)− y(0)] + 2Y (s) = X(s)

Put Initial Condition to zero, we get:

s2Y (s) + 3sY (s) + 2Y (s) = X(s)

Y (s)[s2 + 3s+ 2] = X(s)

→ Y (s)

X(s)
=

1

s2 + 3s+ 2

→ H(s) =
1

s2 + 3s+ 2

→ H(s) =
1

(s+ 1)(s+ 2)

System 2 Determine a Transfer Function of a system below:

ϕ̇(t) = k(ϕref (t)− ϕ(t))

Solution
1

k
ϕ̇(t) = ϕref (t)− ϕ(t)

1

k
ϕ̇(t) + ϕ(t) = ϕref (t)

Taking Laplace Transform of the system:

L[ 1
k
ϕ̇(t) + ϕ(t)] = L[ϕref (t)]

We have:

• ϕref (t) is Input of the system

• ϕ(t) is Output of the system

1

k
sY (s) + Y (s) = X(s)

Y (s)[
1

k
s+ 1] = X(s)

→ Y (s)

X(s)
=

1
1
k
s+ 1

→ H(s) =
1

1
k
s+ 1
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System 3 Determine a Transfer Function of a system below:

ϕ̈(t) = k(ϕref (t)− ϕ(t))

Solution
1

k
ÿ(t) + y(t) = x(t)

Taking Laplace Transform of the system:

L[ 1
k
ÿ(t) + y(t)] = L[x(t)]

1

k
s2Y (s) + Y (s) = X(s)

Y (s)[
1

k
s2 + 1] = X(s)

→ H(s) =
1

1
k
s2 + 1

System 4 Determine a Transfer Function of a system below:

ÿ(t) + ky(t) = kx(t)

Solution Taking Laplace Transform of the system:

s2Y (s) + kY (s) = kX(s)

Y (s)[s2 + k] = kX(s)

→ H(s) =
k

s2 + k

1.2 Example of Determine System from TF
Below is a system transfer function that transfer wheel position θ to wheel velocity θ̇.
Determine the system function and discretize it. We have a TF:

Y (s)

X(s)
=

s

as+ 1

(as+ 1)Y (s) = sX(s)

asY (s) + Y (s) = sX(s)

Taking a Reverse Laplace Transform:

aẏ(t) + y(t) = ẋ(t)

→ ẏ(t) = −1

a
y(t) +

1

a
ẋ(t)
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Discretize the model:
yk+1 − yk

Ts

= −1

a
yk +

1

a

xk+1 − xk

Ts

yk+1 − yk = −
Ts

a
yk +

1

a
(xk+1 − xk)

yk+1 = yk −
Ts

a
yk +

1

a
(xk+1 − xk)

yk+1 = (1− Ts

a
)yk +

1

a
(xk+1 − xk)

→ θ̇k+1 = (1− Ts

a
)θ̇k +

1

a
(θk+1 − θk)



Chapter 2

1st Order Differential Equation

Differential equation is set an equation that its solution is a function and involve of its
derivative. In engineering, these equations is usually used to govern a dynamics system
model and the rate of change of state. In 1st Order Differential Equation is equation
consist of first derivative of function in form:

dy

dx
+ P (x)y = Q(x)

Where :

• P (x) is function of x

• Q(x) is function of x

2.1 Method of Solving 1st Order Homogeneous Differ-
ential Equation

2.1.1 Method of Separation of Variable

Method

When to use the Method All y, dy term and x, dx can explicitly move to
different side of the equation. For example:

dy

dx
= 5xy

→ dy

y
= 5xdx

How to use the Method

• Step 1 : Move all y, dy term and x, dx to different side of the equation.

• Step 2 : Integrate both side with respect to dx and dy respectively.

• Step 3 : Simplify the equation.

11



12 CHAPTER 2. 1ST ORDER DIFFERENTIAL EQUATION

Example Solve:
dy

dx
= 5xy

• Step 1

dy

y
= 5xdx

• Step 2 ∫
1

y
dy = 5

∫
x dx

ln|y| = 5

2
x2 + c

• Step 3

ln|y| = 5

2
x2 + c

eln|y| = e
5
2
x2+c

y = e
5
2
x2+c

y = e
5
2
x2

ec

y = Ce
5
2
x2 ← Solution

2.2 Method of Solving 1st Order Non-Homogeneous
Differential Equation

2.2.1 Method of Variable Substitution

Method

When to use the Method Use in general form of 1st order linear differential
equation of:

dy

dx
+ P (x)y = Q(x)

How to use the Method

• Step 1 : Substitute y = uv and dy
dx

= u dv
dx

+ v du
dx

to equation.

• Step 2 : Factoring v out. example: v(term_u, term_x).

• Step 3 : Put v term equal to zero and solve for u using separation of variable.

• Step 4 : Substitute u back to equation Step 2 where v term is zero and Solve
for v.

• Step 5 : After getting u and v, substitute back into y = uv for a solution of
function.
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Example Solve:
dy

dx
− y

x
= 1

• Step 1

u
dv

dx
+ v

du

dx
− uv

x
= 1

• Step 2

u
dv

dx
+ v(

du

dx
− u

x
) = 1

• Step 3

(
du

dx
− u

x
) = 0

du

dx
=

u

x
du

u
=

dx

x∫
du

u
=

∫
dx

x

ln|u| = ln|x|+ C

ln|u| = ln|x|+ ln|K| ← let C = ln|k| make easier
u = Kx

• Step 4

Kx
dv

dx
= 1

dv =
1

Kx
dx∫

dv =
1

K

∫
1

x
dx

v =
1

K
(ln|x|+D)

v =
1

K
ln|Lx|

• Step 5

Our Solution is:

y = uv = Kx
1

K
ln|Lx| = xln|Lx|
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2.2.2 Method of Integrating Factor

Method

Use in general form of 1st order linear differential equation of:

dy

dx
+ P (x)y = Q(x)

How to use the Method

• Step 1 : Calculate Integrating Factor I(x) = e
∫
P (x)dx.

• Step 2 : Multiply both side of the equation by I(x)

• Step 3 : Form d
dx
(y.I(x)) = I(x)Q(x) and Integrate both side by dx.

• Step 4 : Solve for y and simplify.

Example Solve:

cos(x)
dy

dx
+ sin(x)y = 1

Then :
dy

dx
+ tan(x)y =

1

cos(x)

We have P (x) = tan(x) and Q(x) = 1
cos(x)

• Step 1

I(x) = e
∫
P (x)dx = e

∫
tan(x)dx = eln|sec(x)| = sec(x)

• Step 2

sec(x)
dy

dx
+ sec(x)tan(x)y = sec(x)

1

cos(x)

sec(x)
dy

dx
+ sec(x)tan(x)y = sec2(x)

• Step 3
d

dx
(y.sec(x)) = sec2(x)∫

d

dx
(y.sec(x))dx =

∫
sec2(x)dx

y.sec(x) =

∫
sec2(x)dx

y.sec(x) = tan(x) + C

• Step 4

y.sec(x) = tan(x) + C

y =
tan(x) + C

sec(x)

y = sin(x) + Ccos(x)



Chapter 3

2nd Order Differential Equation

Differential equation is set an equation that its solution is a function and involve of its
derivative. In engineering, these equations is usually used to govern a dynamics system
model and the rate of change of state. In 2nd Order Differential Equation is equation
consist of second and first derivative of function in form:

d2y

dx2
+ P (x)

dy

dx
+Q(x)y = f(x)

3.1 Method of Solving 2nd Order Homogeneous Differ-
ential Equation

The 2nd Order Homogeneous Differential Equation has the form of:
d2y

dx2
+ P (x)

dy

dx
+Q(x)y = 0

3.1.1 Method of Using Characteristic Equation

Method

Where Does it come from ? We propose a solution the 2nd Order Homoge-
neous Differential Equation above where:

y = erx

Thus
d2y

dx2
= r2erx

dy

dx
= rerx

Substitute to the equation:

r2erx + P (x)rerx +Q(x)erx = 0

erx(r2 + P (x)r +Q(x)) = 0

The term erx can not go to zero, thus the term r2 + P (x)r +Q(x) will go to zero.
The term r2+P (x)r+Q(x) is the second order polynomial equation where we have
three different form of solution.

15



16 CHAPTER 3. 2ND ORDER DIFFERENTIAL EQUATION

• ∆ > 0 the equation has 2 distinct real roots r1 and r2

• ∆ = 0 the equation has repeated real root r

• ∆ < 0the equation has 2 complex conjugated roots r1 = α+βi and r2 = α−βi

If:

• ∆ > 0 the solution has a form of y = Aer1x +Ber2x

• ∆ = 0 the solution has a form of y = Aerx +Bxerx

• ∆ < 0 the solution has a form of

– y = Ae(α+βi)x +Be(α−βi)x

– y = eαx(Aeβix +Be−βix)

– y = eαx(Acos(βx) + iBsin(βx)) (From euler’s formula eix = cos(x) +
isin(x))

How to use it

• Step 1 : Form a Characteristic Equation from the equation ar2 + br + c = 0.

• Step 2 : Find ∆ and roots of the equation.

• Step 3 : Plug the result into three of the solution form and determine the
constants using initial condition.

Example 1 Solve:
d2y

dx2
− 9

dy

dx
+ 20y = 0

• Step 1

r2 − 9r + 20 = 0

• Step 2

∆ > 0, r1 = 4, r2 = 5

• Step 3

y = Ae4x +Be5x

Example 2 Solve:
d2y

dx2
− 10

dy

dx
+ 25y = 0

• Step 1

r2 − 10r + 25 = 0

• Step 2
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∆ = 0, r = 5

• Step 3

y = Ae5x +Bxe5x

Example 3 Solve:

d2y

dx2
− 4

dy

dx
+ 13y = 0

• Step 1

r2 − 4r + 13 = 0

• Step 2

∆ < 0, r1 = 2 + 3i, r2 = 2− 3i

• Step 3

y = e2x(Acos(3x) + iBsin(3x))

3.2 Method of Solving 2nd Order Non-Homogeneous
Differential Equation

The 2nd Order Non-Homogeneous Differential Equation has the form of:

d2y

dx2
+ P (x)

dy

dx
+Q(x)y = f(x)

The solution of the 2nd Order Non-Homogeneous Differential Equation has a combination
of General solution and Particular solution y = yh+yp. The General solution is found by
finding the solution of the equation in its homogeneous form while the Particular solution
is found by finding the solution of the equation in its non-homogeneous.
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3.2.1 Method of Undetermined Coefficients

Method

How to use it

• Step 1 : Find yh from the equation in homogeneous form.

• Step 2 : Propose yp by guessing the form of solution from the non-
homogeneous term. Use the table for help. And determine the constants
of the yp.

• Step 3 : Find y = yh+yp and Find remaining constants from initial equation.

Table of solution form

f(x) yp
1 a

5x+ 7 ax+ b
3x2 − 2 ax2 + b+ c

x3 − x+ 1 ax3 + bx2 + cx+ d
sin4x acos4x+ bsin4x
cos4x acos4x+ bsin4x
e5x ae5x

(9x− 2)e5x (ax+ b)e5x

x2e5x (ax2 + b+ c)e5x

e3xsin4x ae3xcos4x+ be3xsin4x
5x2sin4x (ax2 + b+ c)cos4x+ (dx2 + e+ f)sin4x
xe3xcos4x (ax+ b)e3xcos4x+ (cx+ d)e3xsin4x

Example Solve:
d2y

dx2
− y = 2x2 − x− 3

• Step 1

r2 − 1 = 0

∆ > 0, r1 = 1, r2 = −1
yh = Ae1x +Be−1x

• Step 2

Let guess the form based on the 2x2 − x − 3, because of it is a polynomial let guess
yp = ax2 + bx+ c

dyp
dx

= 2ax+ b

d2yp
dx2

= 2a
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Substitute back to equation

2a− (ax2 + bx+ c) = 2x2 − x− 3

2a− ax2 − bx− c = 2x2 − x− 3

−ax2 − bx+ 2a− c = 2x2 − x− 3

−a = 2

−b = −1
2a− c = −3
→ a = −2
→ b = 1

→ c = −1

Thus
yp = −2x2 + x− 1

• Step 3

y = Ae1x +Be−1x − 2x2 + x− 1
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Chapter 4

2nd Order ODE Standard Form

This section, we study on system of 2nd Order ODE with Standard Form Natural Fre-
quency and Damping Ratio.

4.1 Spring Mass Damper Modeling
(Free Body Diagram)

−kx(t)− bẋ(t) = mẍ(t)

mẍ(t) + kx(t) + bẋ(t) = 0

ẍ+
b

m
ẋ+

k

m
x(t) = 0

Let have the differential model above to look like the General Standard Form of :

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) = 0

Where :

• ζ is damping ratio

• ωn is natural frequency

Thus, we have :

• b
m

= 2ζωn → ζ = b
2
√
km

• k
m

= ω2
n → ωn =

√
k
m

Let solve the Standard Form x(t):

ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) = 0

Using Laplace Transform :

s2X(s)− sx(0)− ẋ(0) + 2ζωn(sX(s)− x(0)) + ω2
nX(s) = 0

s2X(s)− sx0 − ẋ0 + 2ζωn(sX(s)− x0) + ω2
nX(s) = 0

21
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X(s) =
sx0 + ẋ0 + 2ζωnx0

s2 + 2ζωns+ ω2
n

Let Find the root of the Denominator of X(s). From solving the 2nd order quadratic
formula, we have the root :

s1,2 =
−2ζωn ±

√
(2ζωn)2 − 4ω2

n

2
= −ζωn ± ωn

√
ζ2 − 1

From the root, we can see that there are 3 cases:

• Distinct Real Root

• Double Real Root

• Complex Root

4.1.1 Distinct Real Roots

To have the Distinct Real Root Case, We need:

(2ζωn)
2 − 4ω2

n > 0

4ζ2ω2
n − 4ω2

n > 0

4ω2
n(ζ

2 − 1) > 0

(ζ2 − 1) > 0

ζ2 > 1

ζ > 1

We get Over-damped Case from the damping ratio of ζ > 1

4.1.2 Double Real Root

To have the Double Real Root Case, We need:

(2ζωn)
2 − 4ω2

n = 0

4ζ2ω2
n − 4ω2

n = 0

4ω2
n(ζ

2 − 1) = 0

(ζ2 − 1) = 0

ζ2 = 1

ζ = 1

We get Critically damped Case from the damping ratio of ζ = 1 . From the mathematical
perspective, the damping ratio is unity (1) mean Critically damped. Where some people
from control perspective prefer the damping ratio of 1√

2
to be Critically damped.
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4.1.3 Complex Root

To have the Complex Root Case, We need:

(2ζωn)
2 − 4ω2

n < 0

4ζ2ω2
n − 4ω2

n < 0

4ω2
n(ζ

2 − 1) < 0

(ζ2 − 1) < 0

ζ2 < 1

ζ < 1

4.2 Discussion of Each Cases

4.2.1 Over-damped Case (ζ > 1)

Above equation can be written as:

X(s) =
sx0 + ẋ0 + 2ζωnx0

s2 + 2ζωns+ ω2
n

=
a1

s+ r1
+

a2
s+ r2

After using Partial Fraction Decomposition, we get:

a1 =
−ẋ0 + x0(−ζωn +

√
(ζ2 − 1)ω2

n)

2
√
(ζ2 − 1)ω2

n

a2 =
ẋ0 + x0(ζωn +

√
(ζ2 − 1)ω2

n)

2
√
(ζ2 − 1)ω2

n

Thus the solution of differential equation ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) = 0 where x(0) =

x0, ẋ(0) = ẋ0 is :
x(t) = a1e

r1t + a2e
r2t

Where:

a1 =
−ẋ0 + x0(−ζωn +

√
(ζ2 − 1)ω2

n)

2
√

(ζ2 − 1)ω2
n

a2 =
ẋ0 + x0(ζωn +

√
(ζ2 − 1)ω2

n)

2
√

(ζ2 − 1)ω2
n

r1, r2 = −ζωn ± ωn

√
ζ2 − 1

4.2.2 Critically damped Case (ζ = 1)

We have the root : r1, r2 = −ζωn ± ωn

√
ζ2 − 1

By substitute ζ = 1, we get the root :

r1, r2 = −ωn

Above equation can be written as:

X(s) =
sx0 + ẋ0 + 2ζωnx0

s2 + 2ζωns+ ω2
n

=
a1

s+ ωn

+
a2

(s+ ωn)2
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After using Partial Fraction Decomposition, we get:

a1 = x0

a2 = ẋ0 + x0ωn

Thus the solution of differential equation ẍ(t) + 2ζωnẋ(t) + ω2
nx(t) = 0 where x(0) =

x0, ẋ(0) = ẋ0 is :
x(t) = x0e

−ωnt + te−ωnt(ẋ0 + x0ωn)

Where:

a1 = x0

a2 = ẋ0 + x0ωn

4.2.3 Under damped Case (ζ < 1)

We have the root : r1, r2 = −ζωn ± ωn

√
ζ2 − 1

By modify the square root part, we get :

r1, r2 = −ζωn ± ωn

√
−1(1− ζ2)

= −ζωn ± ωn

√
(1− ζ2)

√
−1

= −ζωn ± ωn

√
(1− ζ2)i

Let:

σ = ζωn

ωd = ωn

√
(1− ζ2)

We can write the root as :
r1, r2 = −σ ± ωdi

Rewrite the root in form of :

s2 + 2ζωns+ ω2
n = (s+ α)2 + w2

n

We get :

α = ζωn

ω =
√

(1− ζ2)ω2
n

Above equation can be written as:

X(s) =
sx0 + ẋ0 + 2ζωnx0

s2 + 2ζωns+ ω2
n

=
sx0 + ẋ0 + 2ζωnx0

(s+ α)2 + w2
n

After using Partial Fraction Decomposition, The solution of differential equation ẍ(t) +
2ζωnẋ(t) + ω2

nx(t) = 0 where x(0) = x0, ẋ(0) = ẋ0 is :

x(t) = acos(ωt) + bsin(ωt)
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Where:

a = x0e
−αt

b =
ẋ0 + x0ζωn

ω
e−αt

α = ζωn

ω =
√

(1− ζ2)ω2
n

Or in simple form of :
x(t) = Ae−ζωntcos(ωdt− ϕ)

Where:

A =

√
x2
0 +

(ẋ0 + x0ζωn)2

(1− ζ2)ω2
n

ωd = ωn

√
(1− ζ2)

ϕ = atan2(
ẋ0 + x0ζωn

ωn

√
(1− ζ2)

, x0)
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Chapter 5

Partial Fraction Decomposition

Usually we have a Function:

F (s) =
A(s)

B(s)

Where:

• A(s) is a polynomial which order is smaller than B(s)

• B(s) is a polynomial which order is greater than A(s)

To perform the Partial Fraction Decomposition, first we have to get F (s) into the ZPK
(Zero, Pole, Gain) format which is:

F (s) =
K(s+ z1)(s+ z2)(s+ z3)...(s+ zn)

(s+ p1)(s+ p2)(s+ p3)...(s+ pn)

Where:

• z is roots of A(s) that is the zeros of F (s)

• p is roots of B(s) that is the poles of F (s)

Given denominator of F (s), determine the pole of the polynomial (s+p1)...(s+pn). From
the result we can divide into 3 cases.

5.1 Case 1: Distinct Real Poles

Method

In this case we can propose that the F (s) = A(s)
B(s)

can be written into:

F (s) =
a1

s+ p1
+

a2
s+ p2

+ ...+
an

s+ pn

27
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Example

F (s) =
s2 + 8s+ 15

s3 + 3s2 + 2s

We can see that Nominator order is greater than Denominator order. And the denomi-
nator s3+3s2+2s has the roots s1 = 0, s2 = −2, s3 = −1→ p1 = 0, p2 = 2, p3 = 1. Thus
we have:

F (s) =
s2 + 8s+ 15

s3 + 3s2 + 2s
=

s2 + 8s+ 15

(s+ 0)(s+ 2)(s+ 1)
=

a1
s+ 0

+
a2

s+ 2
+

a3
s+ 1

So we have to find a1, a2, a3 to make it work. We can use 2 methods to do it.

Method 1 Multiplication

s2 + 8s+ 15

s(s+ 2)(s+ 1)
=

a1
s

+
a2

s+ 2
+

a3
s+ 1

Multiply both side in terms of a1 (s):

s(
s2 + 8s+ 15

s(s+ 2)(s+ 1)
) = s

a1
s

+ s
a2

s+ 2
+ s

a3
s+ 1

s2 + 8s+ 15

(s+ 2)(s+ 1)
= a1 + s

a2
s+ 2

+ s
a3

s+ 1

Substitute s = 0

0 + 0 + 15

(0 + 2)(0 + 1)
= a1 + 0 + 0

a1 =
15

2

Multiply both side in terms of a2 (s+ 2):

(s+ 2)(
s2 + 8s+ 15

s(s+ 2)(s+ 1)
) = (s+ 2)

a1
s

+ (s+ 2)
a2

s+ 2
+ (s+ 2)

a3
s+ 1

s2 + 8s+ 15

(s)(s+ 1)
= (s+ 2)

a1
s

+ a2 + (s+ 2)
a3

s+ 1

Substitute s = −2

(−2)2 + 8(−2) + 15

(−2)(−2 + 1)
= (−2 + 2)

a1
−2

+ a2 + (−2 + 2)
a3

−2 + 1
4− 16 + 15

2
= 0 + a2 + 0

a2 =
3

2

Multiply both side in terms of a3 (s+ 1):

(s+ 1)(
s2 + 8s+ 15

s(s+ 2)(s+ 1)
) = (s+ 1)

a1
s

+ (s+ 1)
a2

s+ 2
+ (s+ 1)

a3
s+ 1

s2 + 8s+ 15

(s)(s+ 2)
= (s+ 1)

a1
s

+ (s+ 1)
a2

s+ 2
+ a3
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Substitute s = −1

(−1)2 + 8(−1) + 15

(−1)(−1 + 2)
= (−1 + 1)

a1
−1

+ (−1 + 1)
a2

−1 + 2
+ a3

1 +−8 + 15

−1
= 0 + 0 + a3

a3 = −8

So we get:

F (s) =
s2 + 8s+ 15

s3 + 3s2 + 2s
=

15
2

s
+

3
2

s+ 2
+
−8
s+ 1

Method 2 Coefficient

s2 + 8s+ 15

s(s+ 2)(s+ 1)
=

a1
s

+
a2

s+ 2
+

a3
s+ 1

Get the right-hand side denominator the same as left-hand side.

s2 + 8s+ 15

s(s+ 2)(s+ 1)
=

(s+ 1)(s+ 2)a1 + s(s+ 1)a2 + s(s+ 2)a3
s(s+ 2)(s+ 1)

s2 + 8s+ 15 = (s+ 1)(s+ 2)a1 + s(s+ 1)a2 + s(s+ 2)a3

= (s2 + 2s+ s+ 2)a1 + (s2 + s)a2 + (s2 + 2s)a3

= (s2 + 3s+ 2)a1 + (s2 + s)a2 + (s2 + 2s)a3

= s2a1 + 3sa1 + 2a1 + s2a2 + sa2 + s2a3 + 2sa3

s2 + 8s+ 15 = s2(a1 + a2 + a3) + s(3a1 + a2 + 2a3) + (2a1)

1 = a1 + a2 + a3

8 = 3a1 + a2 + 2a3

15 = 2a1

a1 =
15

2

a2 =
3

2
a3 = −8

So we get:

F (s) =
s2 + 8s+ 15

s3 + 3s2 + 2s
=

15
2

s
+

3
2

s+ 2
+
−8
s+ 1

5.2 Case 2: Repeated Real Poles

Method

In this case we can propose that the F (s) = A(s)
B(s)

can be written into:

F (s) =
a1

s+ p
+

a2
(s+ p)2

+ ...+
an

(s+ p)n
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Example

F (s) =
s2 + 2s+ 3

(s+ 1)3

The denominator (s+ 1)3 has a repeated real pole at p = −1. F (s) can be written as:

F (s) =
s2 + 2s+ 3

(s+ 1)3
=

a1
s+ 1

+
a2

(s+ 1)2
+

a3
(s+ 1)3

Method 1 Coefficient
Determine a1, a2, a3

s2 + 2s+ 3

(s+ 1)3
=

(s+ 1)2a1
(s+ 1)2(s+ 1)

+
(s+ 1)a2

(s+ 1)(s+ 1)2
+

a3
(s+ 1)3

s2 + 2s+ 3

(s+ 1)3
=

(s+ 1)2a1 + (s+ 1)a2 + a3
(s+ 1)3

s2 + 2s+ 3 = (s+ 1)2a1 + (s+ 1)a2 + a3

s2 + 2s+ 3 = s2a1 + 2sa1 + a1 + sa2 + a2 + a3

s2 + 2s+ 3 = s2a1 + s(2a1 + a2) + (a1 + a2 + a3)

1 = a1

2 = 2a1 + a2

3 = a1 + a2 + a3

→ a1 = 1

→ a2 = 0

→ a3 = 2

Thus we get:

F (s) =
s2 + 2s+ 3

(s+ 1)3
=

1

s+ 1
+

0

(s+ 1)2
+

2

(s+ 1)3
=

1

s+ 1
+

2

(s+ 1)3

Method 2 Derivative
From finding the common denominator above:

s2 + 2s+ 3 = (s+ 1)2a1 + (s+ 1)a2 + a3

Substitute s = −1
(−1)2 + 2(−1) + 3 = (−1 + 1)2a1 + (−1 + 1)a2 + a3

(−1)2 + 2(−1) + 3 = 0 + 0 + a3

a3 = 2

Take derivative of s2 + 2s+ 3 = (s+ 1)2a1 + (s+ 1)a2 + a3 both side, we get:

2s+ 2 = 2(s+ 1)a1 + a2

Substitute s = −1
2(−1) + 2 = 2(−1 + 1)a1 + a2

2(−1) + 2 = 0 + a2

a2 = 0
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Take derivative of 2s+ 2 = 2(s+ 1)a1 + a2 both side, we get:

2 = 2a1

a1 = 1

Thus we get:

F (s) =
s2 + 2s+ 3

(s+ 1)3
=

1

s+ 1
+

0

(s+ 1)2
+

2

(s+ 1)3
=

1

s+ 1
+

2

(s+ 1)3

5.3 Case 3: Complex Conjugate Poles

Method

In this case we can propose that the F (s) = A(s)
B(s)

can be written into:

F (s) =
A(s)

(s+ α)2 + ω2

Where from general denominator:

s2 + ds+ e = 0

α =
d

2

ω =

√
4e− d2

2

Example

F (s) =
s− 1

s2 + 2s+ 2

From denominator s2 + 2s+ 2 in general form d = 2, e = 2, we get:

α = 1

ω = 1

Thus:

F (s) =
s− 1

s2 + 2s+ 2
=

s− 1

(s+ 1)2 + 12
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5.4 Improper Complex Function

Method

We have a transfer function:
F (s) =

A(s)

B(s)

Where:

• A(s) is a polynomial which order is greater than B(s)

• B(s) is a polynomial which order is smaller than A(s)

We can use synthetic division to make the A(s) smaller than B(s) (Polynomial
Equation division).



Chapter 6

Laplace and Inverse Laplace Transform

Laplace Transform convert a function in time domain into frequency domain in polyno-
mial form. Laplace Transform is used for Analyzing and Solving Ordinary Differential
Equation. By using Laplace Transform we can analyze an ODE by just analyze the
polynomial equation.

Process

Given an Ordinary Differential Equation and Initial Condition

a2ẍ(t) + a1ẋ(t) + a0x(t) = b1u̇(t) + b0u(t) | x(0) = 0, ẋ(0) = 0

⇊

Laplace Transform

X(s) =
b1s+ b0

a2s2 + a1s+ a0

1

s

⇊

Partial Fraction Decomposition

X(s) =
k0
s

+
k1

s+ p1
+

k2
s+ p2

⇊

Inverse Laplace Transform

x(t) = k0 + k1e
−p1t + k2e

−p2t

6.1 Laplace Transform

Definition of Laplace Transform: Given a function in time domain, its Laplace Transform
is denoted by:

F (s) = L{f(t)} =
∫ ∞

0

f(t)e−stdt

Where : s = σ + jω

33
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6.1.1 Laplace of Dirac Delta Function

We have a function :
δ(t) =

1

|a|
√
π
e−(t/a)2

as a→ 0
∆(s) = 1

6.1.2 Laplace of Unit Function

We have a function :

u(t) =

{
1, if t ≥ 0

0, if t < 0

We have a Laplace :

U(s) =

∫ ∞

0

1e−stdt = −1

s
e−st|∞0 = −1

s
[e−∞ − e0] = −1

s
[0− 1] =

1

s

6.1.3 Laplace of f(t) = e−at

We have a function :
f(t) = e−at

We have a Laplace :

F (s) =

∫ ∞

0

e−ate−stdt

=

∫ ∞

0

e−(s+a)tdt

= − 1

s+ a

∫ ∞

0

(−(s+ a)t)′e−(s+a)tdt

= − 1

s+ a

[
e−(s+a)t

]∞
0

= − 1

s+ a

[
e−∞ − e0

]
F (s) =

1

s+ a

6.1.4 Laplace of f(t) = t

We have a function :
f(t) = t

We have a Laplace :

F (s) =

∫ ∞

0

te−stdt

Let :

u = t→ du = dt

dv = e−stdt→ v =

∫
e−stdt = −1

s
e−st
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F (s) = uv −
∫

vdu

= (t)(−1

s
e−st)−

∫
−1

s
e−stdt

= − t

s
e−st +

1

s

∫
e−stdt

= − t

s
e−st − 1

s2
e−st

= −( t
s
+

1

s2
)e−st

= −
(
(
st+ 1

s2
)e−st

)
|∞0

=
1

s2

6.1.5 Laplace of Integral of a Function

We have an integral of a function:

f(t) =

∫ t

0

f(τ)dτ

We have a Laplace:

F (s) =

∫ ∞

0

(

∫ t

0

f(τ)dτ)e−stdt

=

∫ t

0

f(τ)dτ(−1

s
)e−st|∞0 +

∫ ∞

0

1

s
e−stf(t)dt

=
1

s

∫ ∞

0

f(t)e−stdt

6.1.6 Laplace of Derivative of a Function

We have an integral of a function:

f(t) =
df(t)

dt

We have a Laplace:

F (s) =

∫ ∞

0

df(t)

dt
e−stdt

= e−stf(t)|∞0 +

∫ ∞

0

f(t)se−stdt

= −f(0) + s

∫ ∞

0

f(t)e−stdt

L{df(t)
dt
} = sL{f(t)} − f(0)
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6.1.7 Final Value Theorem

FVT is used to relate the steady state behavior of f(t) to the behavior sF (s). If a function
has a Laplace transform, then:

lim
t−>∞

f(t) = lim
s−>0

sF (s)

Example 1 We have a system

Ω(s) =
K

s(τs+ 1)

To find the steady state value of ω(t), we get:

ωss = lim
s−>0

s
K

s(τs+ 1)
= K

Example 2 We have a system

ω̇(t) + aω(t) = bu(t)

sΩ(s) + aΩ(s) = bU(s)

Ω(s)(s+ a) = bU(s)

Ω(s) =
b

(s+ a)
U(s)

Case 1 : We want to study when u(t) = V0 is step function, thus U(s) = V0

s
, we get a

system:

Ω(s) =
V0b

s(s+ a)

• Check if the poles of the system is on the left-half plane

By finding the roots of denominator of the system sΩ(s) = sV0b
s(s+a)

= V0b
(s+a)

. We see the
root is s = −a where a is positive, thus the pole of the system in on the left-half place.
Finding the steady state of the system:

ωss = lim
s−>0

sΩ(s) = lim
s−>0

s
V0b

s(s+ a)
= lim

s−>0

V0b

(s+ a)
=

V0b

a

Case 2 : We want to study when u(t) = t is ramp function, thus U(s) = 1
s2

, we get a
system:

Ω(s) =
b

s2(s+ a)

• Check if the poles of the system is on the left-half plane

By finding the roots of denominator of the system sΩ(s) = s b
s2(s+a)

= b
s(s+a)

. We see the
root is s = −a and s = 0. The root s = 0 is exactly on the imaginary axis, thus the pole
of the system in not on the left-half place. Thus the system will not come to rest at the
final value.
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6.2 Inverse Laplace Transform
We want to inverse the Laplace Transform from frequency domain back to time domain.

f(t) = L−1[F (s)] =

∮ γ+iT

γ−iT

estF (s)ds

From the inverse Laplace Transform from definition, it is very hard. We want to ma-
nipulate the Laplace Transform into an easier and recognizable form to easily inverse
it.

6.2.1 Case 1: Distinct Real Poles

Example

F (s) =
s2 + 8s+ 15

s3 + 3s2 + 2s
=

7.5

s
+
−8
s+ 1

+
1.5

s+ 2

L−1[F (s)] = L−1[
7.5

s
] + L−1[

−8
s+ 1

] + L−1[
1.5

s+ 2
]

= 7.5L−1[
1

s
]− 8L−1[

1

s+ 1
] + 1.5L−1[

1

s+ 2
]

f(t) = 7.5.1(t)− 8e−1t + 1.5e−2t

6.2.2 Case 2: Repeated Real Poles

Example

F (s) =
s2 + 2s+ 3

(s+ 1)3
=

1

s+ 1
+

2

(s+ 1)3

L−1[F (s)] = L−1[
1

s+ 1
] + L−1[

2

(s+ 1)3
]

= L−1[
1

s+ 1
] + 2L−1[

1

(s+ 1)3
]

= e−1t + 2(
1

(3− 1)!
t3−1e−1t)

f(t) = e−1t + t2e−t

6.2.3 Case 3: Complex Conjugate Poles

Example

F (s) =
s− 1

s2 + 2s+ 2
=

s− 1

(s+ 1)2 + 12

L−1[F (s)] = L−1[
s− 1

(s+ 1)2 + 12
] = L−1[

s− 1 + 2− 2

(s+ 1)2 + 12
] = L−1[

s+ 1− 2

(s+ 1)2 + 12
]

= L−1[
s+ 1

(s+ 1)2 + 12
] + L−1[

−2
(s+ 1)2 + 12

]

f(t) = e−tcos(t)− 2e−tsin(t)

6.3 Poles Location and Time Domain Response
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Chapter 7

State Space Representation

Linear State Space Form
ẋ = A(t)x+Bu(t)

Non-Linear State Space Form
ẋ = f(t, x, u)

7.1 Forming State Space

Process

• Step 1 : Obtain Equation of Motion.

• Step 2 : Choose State Variables [ex: position, velocity ...].

• Step 3 : Take Derivative of State Vector.

• Step 4 : Write in State-Space form

• Step 5 : Write Output Equation.

Example 1 Obtain S.S from system below

• Step 1 : Obtain Equation of Motion.

ÿ + 4ẏ + 3y = 3u

• Step 2 : Choose State Variables. We would like to know y and ẏ. Thus, Let Choose:

X1 = y

X2 = ẏ

• Step 3 : Take Derivative of State Vector.

X1 = y => Ẋ1 = ẏ

X2 = ẏ => Ẋ2 = ÿ = 3u− 4ẏ − 3y[
Ẋ1

Ẋ2

]
=

[
ẏ

3u− 4ẏ − 3y

]
41



42 CHAPTER 7. STATE SPACE REPRESENTATION

• Step 4 : Write in State-Space form.

Ẋ =

[
Ẋ1

Ẋ2

]
=

[
0 1
−3 −4

] [
X1

X2

]
+

[
0
3

]
u

• Step 5 : Write Output Equation. We choose y = yone because we only interest in
displacement only X1, if we are interested in velocity X2 as well we choose y = ytwo.

yone =
[
1 0

] [X1

X2

]
or ytwo =

[
1 0
0 1

] [
X1

X2

]
Example 2 Obtain S.S from system of mass, spring, damper

y

F

k

c

y

mky

cdy
dt

dy
dt

• Step 1 : Obtain Equation of Motion. From the 2nd law of Newton:∑
F⃗ = ma⃗

F − ky − cẏ = mÿ

mÿ + cẏ + ky = F

ÿ +
c

m
ẏ +

k

m
y =

F

m

• Step 2 : Choose State Variables. We would like to know y and ẏ. Thus, Let Choose:

X1 = y

X2 = ẏ

• Step 3 : Take Derivative of State Vector.

X1 = y => Ẋ1 = ẏ

X2 = ẏ => Ẋ2 = ÿ =
F

m
− c

m
ẏ − k

m
y[

Ẋ1

Ẋ2

]
=

[
ẏ

F
m
− c

m
ẏ − k

m
y

]
• Step 4 : Write in State-Space form.

Ẋ =

[
Ẋ1

Ẋ2

]
=

[
0 1
−k
m

−c
m

] [
X1

X2

]
+

[
0
1
m

]
F

• Step 5 : Write Output Equation.

y =
[
1 0

] [X1

X2

]
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Example 3 Obtain S.S from system of mass, spring with 2 vertical mass

• Step 1 : Obtain Equation of Motion. From the 2nd law of Newton:∑
F⃗ = ma⃗

Mass 1: − k1y1 + k2y1 + u1 + k2y2 = m1ÿ1

Mass 2: − k3y2 − k2y2 + u2 + k2y1 = m2ÿ2

• Step 2 : Choose State Variables. We would like to know y and ẏ. Thus, Let Choose:

X1 = y1

X2 = ẏ1

X3 = y2

X4 = ẏ2

• Step 3 : Take Derivative of State Vector.

X1 = y1 => Ẋ1 = ẏ1

X2 = ẏ1 => Ẋ2 = ÿ1 = −
k1
m1

y1 +
k2
m1

y1 +
1

m1

u1 +
k2
m1

y2 =
k2 − k1
m1

y1 +
1

m1

u1 +
k2
m1

y2

X3 = y2 => Ẋ3 = ẏ2

X4 = ẏ2 => Ẋ4 = ÿ2 = −
k3
m2

y2 −
k2
m2

y2 +
1

m2

u2 +
k2
m2

y1 =
−k3 − k2

m2

y2 +
1

m2

u2 +
k2
m2

y1
Ẋ1

Ẋ2

Ẋ3

Ẋ4

 =


ẏ1

k2−k1
m1

y1 +
1
m1

u1 +
k2
m1

y2
ẏ2

−k3−k2
m2

y2 +
1
m2

u2 +
k2
m2

y1
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• Step 4 : Write in State-Space form.

Ẋ =


Ẋ1

Ẋ2

Ẋ3

Ẋ4

 =


0 1 0 0

k2−k1
m1

0 k2
m1

0

0 0 0 1
k2
m2

0 −k3−k2
m2

0



X1

X2

X3

X4

+


0 0
1
m1

0

0 0
0 1

m2

[
u1

u2

]

• Step 5 : Write Output Equation.

y =

[
1 0 0 0
0 0 1 0

]
X1

X2

X3

X4


Example 4 Solve system of single mass and spring and force using Matlab.

MATLAB Numerical Method using ode45(Runge Kutta)
1 [t,x] = ode45(@f,tspan ,x_0)
2 t = time
3 x = state vector
4 ode45 = solver
5 f = function
6 tspan = t_0 -> t_f
7 x_0 = initial condition
8

9

10 Example:
11

12 tspan = [0 ,10];
13 x_0 = [0 ,0];
14

15 function dx = model(t,x)
16 % dx = Ax+Bu
17 k = 0.01;m=1;u=2;
18 A = [0 1;-k/m 0];
19 B = [0;1/m];
20 dx = A*x + B*u;
21

22 [t,x] = ode45(@model ,tspan ,x_0);
23 plot(t,x(:;1))
24 hold on
25 plot(t,x(:;2))
26 legend(’displacement ’,’velocity ’)

Example 5 Obtain S.S from system of mass, spring, damper with 2 horizontal mass
Equation of Motion ∑

F⃗ = ma⃗

Mass 1: m1p̈(t) + b1ṗ(t) + k1p(t) = u(t) + k1q(t) + b1q̇(t)

Mass 2: m2q̈(t) + (k1 + k2)q(t) + (b1 + b2)q̇(t) = k1p(t) + b1ṗ(t)

p̈(t) =
1

m1

u(t) +
k1
m1

q(t) +
b1
m1

q̇(t)− b1
m1

ṗ(t)− k1
m1

p(t)

q̈(t) =
k1
m2

p(t) +
b1
m2

ṗ(t)− (k1 + k2)

m2

q(t)− (b1 + b2)

m2

q̇(t)
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Let:

x =


x1

x2

x3

x4

 =


p
q
ṗ
q̇

 => ẋ =


ẋ1

ẋ2

ẋ3

ẋ4

 =


ṗ
q̇
p̈
q̈


Thus, we get state space form:

ẋ =


ẋ1

ẋ2

ẋ3

ẋ4

 =


0 0 1 0
0 0 0 1
− k1

m1

k1
m1

− b1
m1

b1
m1

k1
m2

− (k1+k2)
m2

b1
m2

− (b1+b2)
m2



x1

x2

x3

x4

+


0
0
1
m1

0

u(t)

y =
[
1 0 0 0

] 
x1

x2

x3

x4



7.2 State Space of Scalar Differential Equation System

7.2.1 Case 1

Consider equation below:

y(n) + a1y
(n−1) + ...+ an−1y

′ + any = u← Input has not derivative
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Let:

x =


x1

x2
...

xn−1

xn

 =


y
y′

...
yn−1

yn


Thus

ẋ =


ẋ1

ẋ2
...

ẋn−1

ẋn

 =


y′

y′′

...
yn

−a0x1 − a1x2...− anxn + u

 =


ẋ2

ẋ3
...
ẋn

−a0x1 − a1x2...− anxn + u


Arrange into SS form:

ẋ =


0 1 0 ... 0
0 0 1 ... 0
...

...
... ...

...
−an −an−1 −an−2 ... −a1



x1

x2
...
xn

+


0
0
...
1

u

y =
[
1 0 ... 0

]

x1

x2
...
xn


We have a corresponding Transfer Function is

Y (s)

U(s)
=

1

sn + a1sn−1 + ...+ an−1s+ an

7.2.2 Case 2

Consider equation below:

y(n) + a1y
(n−1) + ...+ an−1y

′ + any = β0u
n + β1u

n−1 + ...+ βnu← Input has derivative

Let:

x1 = y − β0u

x2 = y′ − β0u
′ − β1u = x′

1 − β1u

...
xn = yn−1 − β0u

n−1 − ...− βn−1u = x′
n−1 − βn−1u

Where β0, β1, ..., βn−1 are determined from:

β0 = b0

β1 = b1 − a1β0

β2 = b2 − a1β1 − a2β0

...
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Arrange into SS form:

ẋ =


0 1 0 ... 0
0 0 1 ... 0
...

...
... ...

...
−an −an−1 −an−2 ... −a1



x1

x2
...
xn

+


β1

β2
...
βn

u

y =
[
1 0 ... 0

]

x1

x2
...
xn

+ β0u

We have a corresponding Transfer Function is

Y (s)

U(s)
=

b0s
n + b1s

n−1 + ...+ bn−1s+ bn
sn + a1sn−1 + ...+ an−1s+ an

7.3 Transfer Function to State Space

Example
Y (s)

U(s)
=

100

s4 + 20s3 + 10s2 + 7s+ 100

(s4 + 20s3 + 10s2 + 7s+ 100)Y (s) = 100U(s)

Taking Inverse Laplace Transform

y(4) + 20y(3) + 10y′′ + 7y′ + 100y = 100u

Let:

x1 = y => ẋ1 = y′ = x2

x2 = y′ => ẋ2 = y′′ = x3

x3 = y′′ => ẋ3 = y(3) = x4

x3 = y′′′ => ẋ4 = y(4) = 100u− 20y(3) − 10y′′ − 7y′ − 100y

State Space form:

ẋ =


0 1 0 0
0 0 1 0
0 0 0 1
−100 −7 −10 −20



x1

x2

x3

x4

+


0
0
0
100

u

y =
[
1 0 0 0

] 
x1

x2

x3

x4
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7.4 State Space to Transfer Function

We have a Transfer Function:
Y (s)

U(s)
= G(s)

with state space in form of:

ẋ = Ax+Bu

y = Cx+Du

Let have a Laplace transform of SS:

sX(s)− x(0) = AX(s) +BU(s)

Y (s) = CX(s) +DU(s)

Assuming x(0) = 0IC, we get:

sX(s)− AX(s) = BU(s)

(sI − A)X(s) = BU(s)

(sI − A)−1(sI − A)X(s) = (sI − A)−1BU(s)

X(s) = (sI − A)−1BU(s)

Substitute into Y (s)

Y (s) = C[(sI − A)−1BU(s)] +DU(s)

Y (s) = C(sI − A)−1BU(s) +DU(s)

Y (s) = [C(sI − A)−1B +D]U(s)

Thus the Transfer function can be found by:

G(s) = C(sI − A)−1B +D

Example

ẋ =

 0 1 0
0 0 1
−5 −25 −5

x1

x2

x3

+

 0
25
−120

u

y =
[
1 0 0

] x1

x2

x3



G(s) =
[
1 0 0

]
[

s 0 0
0 s 0
0 0 s

−
 0 1 0

0 0 1
−5 −25 −5

]−1

 0
25
−120

+ 0

G(s) =
[
1 0 0

]  s 1 0
0 s 1
−5 −25 s+ 5

−1  0
25
−120
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G(s) =
[
1 0 0

] 
(s2+5s+25)

(s3+5s2+25s−5)
(−s−5)

(s3+5s2+25s−5)
1

(s3+5s2+25s−5)
−5

(s3+5s2+25s−5)
(s2+5s)

(s3+5s2+25s−5)
−s

(s3+5s2+25s−5)
5s

(s3+5s2+25s−5)
(25s−5)

(s3+5s2+25s−5)
s2

(s3+5s2+25s−5)


 0

25
−120



G(s) =
[
1 0 0

] 
(−25s−245)

(s3+5s2+25s−5)
(25s2+245s)

(s3+5s2+25s−5)
(−120s2+625s−125)
(s3+5s2+25s−5)


G(s) =

(−25s− 245)

(s3 + 5s2 + 25s− 5)

Thus
G(s) =

25s+ 245

s3 + 5s2 + 25s+ 5
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Chapter 8

Linear Approximation with Taylor
Series

What is a Linear System ? Linear System is a system that comply to 2 rules.

• Superposition (Addition).

• Homogeneous (Multiplication).

8.1 Superposition
Given that we have a function y = f(x).

• If we have a value x1 substitute to the function we get y1 : y1 = f(x1)

• If we have a value x2 substitute to the function we get y1 : y2 = f(x2).

• If we have a value x1+x2 substitute to the function we should get y1+y2 : y1+y2 =
f(x1 + x2)

8.2 Homogeneous
Given that we have a function y = f(x).

• If we have a value αx1 substitute to the function we get y1 : y1 = f(αx1)

• If we have a value x1 substitute to the function then multiply by α we should get
y1 = αf(x1)

Example Find out if the function is linear : y = x

Superposition test y1 = x1, y2 = x2 Add both result together y1 + y2 = x1 + x2

Substitute x1 + x2 to the function we get y1 + y2. Thus, y1 + y2 = y12. TEST PASS.

Homogeneous test Substitute αx we get y = αx. Substitute x and multiply by α we
get y = αx. Thus, αx = αx. TEST PASS. Both test is passed and thus the system is
linear.

51
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Example Find out if the function is linear : y = x2

Superposition test y1 = x2
1, y2 = x2

2. Add both result together y1 + y2 = x2
1 + x2

2.
Substitute x1 + x2 to the function we get (x1 + x2)

2. Thus, y1 + y2! = y12. TEST FAIL.
The test is failed and thus the system is nonlinear.

8.3 Linearization Process
One of the Linearization method is by using Tyler Expansion Series within an operational
range for stability.

y ≈ y(x0) +

[
dy

dx
|x0

(x− x0)

1!

]
+

[
d2y

dx2
|x0

(x− x0)
2

2!

]
+ ...[HigherOrderTerm]

Let take a look at the plot:

y

x

y = f(x) y = L(x)

(a, f(a))

Figure 8.1: Mass spring system

y = L(x) is the linear approximation of y = f(x) and a = x0 is an equilibrium point.
We can see that we want to pick an operational range where the function is stable because
the y = L(x) is close to y = f(x). As we move a way from the operational range, the
approximation is starting to diverge from the real solution.

Example Linearize : y = x2. We have:

y ≈ y(x0) +

[
dy

dx
|x0

(x− x0)

1!

]
+

[
d2y

dx2
|x0

(x− x0)
2

2!

]
+ ...[HigherOrderTerm]

Only consider the first order term and eliminate HOT because in HOT the variable x is
subject to power number that will make it nonlinear. We get:

y ≈ y(x0) +

[
dy

dx
|x0

(x− x0)

1!

]
We get:

dy

dx
|x0 =

d(x2)

dx
|x0 = 2x|x0 = 2x0

We get:

y ≈ y(x0) +

[
2x0

(x− x0)

1!

]
y ≈ y(x0) + [2x0(x− x0)]
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y ≈ y(x0) + 2x0x− 2x2
0

Let pick an equilibrium point x0 = 2

y = 22 + 2× 2x− 2× 22

y = 4 + 4x− 8

y = 4x− 4

Now that we have a original function y = x2 and approximation function at x0 = 2
y = 4x− 4. Let compare:

x = 2

=> yori = 22 = 4

=> ylin = 4× 2− 4 = 4

Both are equal to each other at equilibrium point.

x = 3

=> yori = 32 = 9

=> ylin = 4× 3− 4 = 8

A way from the equilibrium point, it starts to diverge.
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Chapter 9

DC Motor

DC motor is a mechatronic product that consist of two parts: the mechanical part and
the electrical part. A typical dc motor used by a robot is constructed by: a dc motor, a
wheel encoder (for measuring rotation pulse of motor ), and a gear box (for reducing the
speed of motor).

Gear box DC Motor Encoder

Figure 9.1: Typical DC Motor

9.1 Modelling

fixed
field

K.V.L

+va

Ra ia La

vb
Ta

Tf

J,D
ω

Figure 9.2: dc motor model

9.1.1 Electrical Part

vb(t) = Kbθ̇(t) = Kbω(t) (9.1)

Where:
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• vb(t) is voltage at terminal conductor of motor

• Kb is back emf constant

• θ̇ = ω is angular velocity of motor

Ta = Ktia(t) (9.2)

Where:

• Ta is rotor torque

• Kt is motor torque

• ia is the current draw by motor

By applying Kirchoff Voltage Law to the circuit loop in Figure 9.2

• va(t) is input voltage from power source

• vresistance = Raia(t) is voltage across resistance

• vinductor = La
dia(t)
dt

is voltage across inductor

va(t)− vb(t)−Raia(t)− La
dia(t)

dt
= 0

⇒ va(t) = vb(t) +Raia(t) + La
dia(t)

dt
(9.3)

Substitute Equation 9.1 into Equation 9.3, we get:

va(t) = Kbω(t) +Raia(t) + La
dia(t)

dt
(9.4)

In practical dc motor the La is very small (La ≈ 0) and neglectable.

va(t) = Kbω(t) +Raia(t)

⇒ ia(t) =
va(t)−Kbω(t)

Ra

(9.5)

9.1.2 Mechanical Part

Ta = Tf + Jω̇(t) (9.6)

Where:

• Tf is torque of coulomb friction and viscous friction

• J is moment of inertia
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We know that:
Tf = Tcsign[ω(t)] +Dω(t) (9.7)

Where:

• Tc is coulomb friction torque

• D is coefficient viscous friction

Substitute Equation 9.7 to Equation 9.6, we get:

Ta = Tcsign[ω(t)] +Dω(t) + Jω̇(t)

9.1.3 Approximation of coulomb friction to zero Tc ≈ 0

Ta = Dω(t) + Jω̇(t) (9.8)

From Equation 9.2: Ta = Ktia(t) substitute to Equation 9.8:

Ktia(t) = Dω(t) + Jω̇(t)

⇒ ia(t) =
Dω(t) + Jω̇(t)

Kt

(9.9)

9.1.4 Keep coulomb friction Tc

⇒ ia(t) =
Tcsign[ω(t)] +Dω(t) + Jω̇(t)

Kt

(9.10)

9.1.5 Electrical and Mechanical combine

9.1.6 Approximation of coulomb friction to zero Tc ≈ 0

From Equation 9.5 and Equation 9.9: Put it side by side:

ia(t) = ia(t)

va(t)−Kbω(t)

Ra

=
Dω(t) + Jω̇(t)

Kt

Get ω̇(t):

ω̇(t) =

(va(t)−Kbω(t))Kt

Ra
−Dω(t)

J

ω̇(t) =
(va(t)−Kbω(t))Kt

RaJ
− Dω(t)

J

ω̇(t) =
va(t)Kt −KbKtω(t)

RaJ
− Dω(t)

J

Separate ω(t) and va(t):
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Lumped Parameters without Friction

ω̇(t) = −(KbKt +DRa

RaJ
)ω(t) +

Kt

RaJ
va(t) (9.11)

Let:

• a = (KbKt+DRa

RaJ
)ω(t) [1/s]

• b = Kt

RaJ
[rad/s2/V ]

We get lumped Parameter in a simplified form as:

⇒ ω̇(t) = −aω(t) + bva(t) (9.12)

9.1.7 Keep coulomb friction Tc

Lumped Parameters with Friction

ω̇(t) = −(KbKt +DRa

RaJ
)ω(t) +

Kt

RaJ
va(t)−

Tc

J
sign(ω(t)) (9.13)

Let:

• a = (KbKt+DRa

RaJ
) [1/s]

• b = Kt

RaJ
[rad/s2/V ]

• c = Tc

J
[.]

We get lumped Parameter in a simplified form as:

⇒ ω̇(t) = −aω(t) + bva(t)− csign(ω(t)) (9.14)

9.2 Simulation

In general, the equation ω̇(t) = −aω(t) + bva(t)− csign(ω(t) is used to represent all the
dc motor in the market. By modifying the parameters a, b, c will result in different dc
motor. From equation ω̇(t) = −aω(t) + bva(t)− csign(ω(t))

• ω̇(t) is the angular acceleration of dc motor and is the output of the system

• ω(t) is the angular velocity of dc motor and is the output of the system

• va(t) is the input voltage to dc motor and is the input of the system
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Figure 9.3: Simulation Flow

9.3 DC Motor 2nd Order Model (La is not Neglected)

9.3.1 No Friction

From Equation 9.4 and Equation 9.9, we have:

va(t) = Kbω(t) +Raia(t) + La
dia(t)

dt

ia(t) =
Dω(t) + Jω̇(t)

Kt

dia(t)

d(t)
=

d

dt

(
Dω(t) + Jω̇(t)

Kt

)
=

1

Kt

d

dt
(Dω(t) + Jω̇(t))

=
1

Kt

d

dt
(Dω(t)) +

d

dt
(Jω̇(t))

=
1

Kt

(Dω̇(t) + Jω̈(t))

We get:

va(t) = Kbω(t) +Ra
Dω(t) + Jω̇(t)

Kt

+ La
1

Kt

(Dω̇(t) + Jω̈(t)) (9.15)

Ktva(t) = KtKbω(t) +Ra(Dω(t) + Jω̇(t)) + La(Dω̇(t) + Jω̈(t))

Ktva(t) = KtKbω(t) +RaDω(t) +RaJω̇(t) + LaDω̇(t) + LaJω̈(t)

Ktva(t) = (KtKb +RaD)ω(t) + (RaJ + LaD)ω̇(t) + LaJω̈(t)

LaJω̈(t) = −(KtKb +RaD)ω(t)− (RaJ + LaD)ω̇(t) +Ktva(t)
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Lumped Parameters without Friction 2nd Order

ω̈(t) = −RaJ + LaD

LaJ
ω̇(t)− KtKb +RaD

LaJ
ω(t) +

Kt

LaJ
va(t)

Let:
a =

RaJ + LaD

LaJ
, b =

KtKb +RaD

LaJ
, c =

Kt

LaJ

We get lumped Parameter in a simplified form as:

⇒ ω̈(t) = −aω̇(t)− bω(t) + cva(t) (9.16)

9.3.2 With Friction

From Equation 9.4 and Equation 9.10, we have:

va(t) = Kbω(t) +Raia(t) + La
dia(t)

dt

ia(t) =
Tcsign[ω(t)] +Dω(t) + Jω̇(t)

Kt

dia(t)

d(t)
=

d

dt

(
Tcsign[ω(t)] +Dω(t) + Jω̇(t)

Kt

)
=

1

Kt

(Dω̇(t) + Jω̈(t))← derivative of sign function is 0

We get:

va(t) = Kbω(t) +Ra
Tcsign[ω(t)] +Dω(t) + Jω̇(t)

Kt

+ La
1

Kt

(Dω̇(t) + Jω̈(t)) (9.17)

Ktva(t) = KtKbω(t) +RaTcsign[ω(t)] +RaDω(t) +RaJω̇(t)) + LaDω̇(t) + LaJω̈(t)

Lumped Parameters with Friction 2nd Order

ω̈(t) = −RaJ + LaD

LaJ
ω̇(t)− KtKb +RaD

LaJ
ω(t) +

Kt

LaJ
va(t)−

RaTc

LaJ
sign[ω(t)]

Let:
a =

RaJ + LaD

LaJ
, b =

KtKb +RaD

LaJ
, c =

Kt

LaJ
, d =

RaTc

LaJ

We get lumped Parameter in a simplified form as:

⇒ ω̈(t) = −aω̇(t)− bω(t) + cva(t)− dsign(ω(t)) (9.18)



Chapter 10

DC Motor Lamped Parameters
Identification

DC Motor is widely used in many applications such as robot, industrial application -etc.
It has been produced in great number, some is at high standard with larger documentation
and specification while some are inexpensive with little to none of documentation. To be
able to use the dc motor efficiently, we must know it mathematical model. In this lesson,
we use a variant of a famous algorithm known as Extended Kalman Filter (EKF) and
Unscented Kalman Filter (UKF) to estimate the dc motor model.

10.1 DC Motor Stochastic State Space Model
From Lecture 1 : DC Motor, We have a mathematical model to represent the motor:
Model with neglect the coulomb friction:

ω̇(t) = −aω(t) + bva(t)

Model with the coulomb friction:

ω̇(t) = −aω(t) + bva(t)− csign(ω(t))

10.1.1 Model with neglect the coulomb friction

From the model:
ω̇(t) = −aω(t) + bva(t) (10.1)

In control system, we have a state space model for a nonlinear model:

ẋ(t) = f(t, x(t), u(t)) + vnoise(t)

y(t) = h(t, x(t), u(t)) + ωnoise(t)

Where:

• ẋ(t) is rate of change of state

• x(t) is the current state

• u(t) is the input to the system
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• y(t) is the measurement model

• vnoise(t) is random process noise

• ωnoise(t) is random measurement noise

From Equation 10.1, Let:

x1 = ω

x2 = a

x3 = b

(10.2)

We get:

ẋ1 = ω̇ = −aω(t) + bva(t) = −x2x1 + x3va(t)

ẋ2 = 0

ẋ3 = 0

(10.3)

In continuous nonlinear stochastic system matrix form

ẋ(t) =

ẋ1

ẋ2

ẋ3

 (t) =

−x2x1 + x3va(t)
0
0

+
√
Qcvnoise(t)

y(t) =
[
1 0 0

] x1

x2

x3

 (t) +
√
Rωnoise(t)

(10.4)

Discretize the continuous model from Equation 10.4:

ẋ(t) =

−x2x1 + x3va(t)
0
0

+
√

Qcvnoise(t)

y(t) =
[
1 0 0

] x1

x2

x3

 (t) +
√
Rωnoise(t)

(10.5)

xk+1 − xk

Ts

=

−x2x1 + x3va(t)
0
0

+
√
Qcvnoise(t)

yk =
[
1 0 0

] x1

x2

x3


k

+
√
Rωnoise(t)

(10.6)
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Discretized nonlinear stochastic system in matrix form

xk+1 = xk + Ts

−x2x1 + x3va,k
0
0

+
√

TsQdvnoise,k

yk =
[
1 0 0

] x1

x2

x3


k

+
√
Rωnoise,k

(10.7)

10.1.2 Model the coulomb friction

From the model:

ω̇(t) = −aω(t) + bva(t)− csign(ω(t)) (10.8)

From Equation 10.8, Let:

x1 = ω

x2 = a

x3 = b

x4 = c

(10.9)

We get:

ẋ1 = ω̇ = −aω(t) + bva(t) = −x2x1 + x3va(t)− x4sign(x1)

ẋ2 = 0

ẋ3 = 0

ẋ4 = 0

(10.10)

In continuous nonlinear stochastic system matrix form

ẋ(t) =


ẋ1

ẋ2

ẋ3

ẋ4

 (t) =


−x2x1 + x3va(t)− x4sign(x1)

0
0
0

+
√

Qcvnoise(t)

y(t) =
[
1 0 0 0

] 
x1

x2

x3

x4

 (t) +
√
Rωnoise(t)

(10.11)
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Discretized nonlinear stochastic system in matrix form

xk+1 = xk + Ts


−x2x1 + x3va,k − x4sign(x1)

0
0
0

+
√

TsQdvnoise,k

yk =
[
1 0 0 0

] 
x1

x2

x3

x4


k

+
√
Rωnoise,k

(10.12)

10.2 Identification using Extended Kalman Filter(EKF)

DC Motor Parameters Identification with EKF

Initialize Select any

• x̂0|0 initial state estimate

• P0|0 positive definite error covariance matrix

Time Update

x̂k+1|k = fd(x̂k|k, uk)

Pk+1|k = AkPk|kA
T
k +Q

(10.13)

Measurement Update

ŷk+1|k = hd(x̂k+1|k, uk+1)

Pxz,k+1|k = Pk+1|kC
T
k+1

Pzz,k+1|k = Ck+1Pk+1|kC
T
k+1 +R

x̂k+1|k+1 = x̂k+1|k + Pxz,k+1|kP
−1
zz,k+1|k(yk+1 − ŷk+1|k)

Pk+1|k+1 = Pk+1|k − Pxz,k+1|kP
−1
zz,k|k+1P

T
xz,k+1|k

(10.14)

10.2.1 Model with neglect the coulomb friction

From Equation 10.7, We have:

xk+1 = xk + Ts

−x2x1 + x3va,k
0
0

+
√

TsQdvnoise,k

yk =
[
1 0 0

] x1

x2

x3


k

+
√
Rωnoise,k
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Applying Extended Kalman Filter

Initialize state and positive definite error covariance matrix

x̂0|0 =

 2
13
25

 or some number randomly

P0|0 = 2 ∗ eye(3) =

2 0 0
0 2 0
0 0 2

 or some number randomly

Time Update

• Ts = 0.01 sampling time (s) , up to user

• Q = 0.00001

10 0 0
0 25 0
0 0 25

 = 0.00001× diag([10 25 25])

process covariance matrix, smaller is truth in process model (use for tuning)

• R = 0.02

1 0 0
0 1 0
0 0 1

 = 0.02× diag([1 1 1])

measurement covariance matrix, smaller is truth in measurement (use for tuning)

Compute

x̂k+1|k = x̂k + Ts

−x2x1 + x3va,k
0
0

+
√
TsQdvnoise,k

√
TsQdvnoise,k put this bunch if we use in simulation to simulate noise to a true system,

don’t put if taking real value from system because the system has noise already.

Compute
Pk+1|k = AkPk|kA

T
k +Q

where:

Ak =

−x2 −x1 va
0 0 0
0 0 0


is the jacobian matrix calculated by derivative the state model. From Equation 10.4

Jf (x, y) =


df1
dx1

df1
dx2

df1
dx3

df2
dx1

df2
dx2

df2
dx3

df3
dx1

df3
dx2

df3
dx3

 =

−x2x1+x3va
dx1

−x2x1+x3va
dx2

−x2x1+x3va
dx3

0
dx1

0
dx2

0
dx3

0
dx1

0
dx2

0
dx3


Measurement Update
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Compute ŷk+1|k = hd(x̂k+1|k, uk+1) measurement estimation. This equation is the es-
timation of a measurement would look like. In our case, we measure the ω directly
(Equation 10.4) and thus we can take:

ŷk+1|k = [1 0 0]x̂k+1|k +Dkua,k

Where: Dk = 0

Compute

Pxz,k+1|k = Pk+1|kC
T
k+1

Pzz,k+1|k = Ck+1Pk+1|kC
T
k+1 +R

From Equation 10.4, we have C = [1 0 0]

Compute
x̂k+1|k+1 = x̂k+1|k + Pxz,k+1|kP

−1
zz,k+1|k(yk+1 − ŷk+1|k)

Where yk+1 is the measurement from sensor which has noise mixed inside. Get data
directly from the sensor.

Compute
Pk+1|k+1 = Pk+1|k − Pxz,k+1|kP

−1
zz,k|k+1P

T
xz,k+1|k

10.2.2 Model with coulomb friction

From Equation 10.12, We have:

xk+1 = xk + Ts


−x2x1 + x3va,k − x4sign(x1)

0
0
0

+
√

TsQdvnoise,k

yk =
[
1 0 0 0

] 
x1

x2

x3

x4


k

+
√
Rωnoise,k

Applying Extended Kalman Filter

Initialize state and positive definite error covariance matrix

x̂0|0 =


2
13
25
1

 or some number randomly

P0|0 = 2 ∗ eye(4) =


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

 or some number randomly
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Time Update

• Ts = 0.01 sampling time (s) , up to user

• Q = 0.00001


10 0 0 0
0 25 0 0
0 0 25 0
0 0 0 1

 = 0.00001× diag([10 25 25 1])

process covariance matrix, smaller is truth in process model (use for tuning)

• R = 0.02


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = 0.02× diag([1 1 1 1])

measurement covariance matrix, smaller is truth in measurement (use for tuning)

Compute

x̂k+1|k = x̂k + Ts


−x2x1 + x3va,k − x4sign(x1)

0
0
0

+
√

TsQdvnoise,k

Compute
Pk+1|k = AkPk|kA

T
k +Q

where:

Ak =


−x2 −x1 va −sign(x1)
0 0 0 0
0 0 0 0
0 0 0 0


is the jacobian matrix calculated by derivative the state model from Equation 10.11.

Measurement Update

Compute
ŷk+1|k = [1 0 0 0]x̂k+1|k +Dkua,k

Where: Dk = 0

Compute

Pxz,k+1|k = Pk+1|kC
T
k+1

Pzz,k+1|k = Ck+1Pk+1|kC
T
k+1 +R

From Equation 10.11, we have C = [1 0 0 0]
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Compute
x̂k+1|k+1 = x̂k+1|k + Pxz,k+1|kP

−1
zz,k+1|k(yk+1 − ŷk+1|k)

Where yk+1 is the measurement from sensor which has noise mixed inside. Get data
directly from the sensor.

Compute
Pk+1|k+1 = Pk+1|k − Pxz,k+1|kP

−1
zz,k|k+1P

T
xz,k+1|k

1 function x_est = EKF(uk ,y_true)
2 Ts =0.01;
3 persistent x_est_p P Qd_est R_est Qc_est;
4 if isempty(x_est_p)
5 x_est_p = [2;13;25;1];
6

7 P = 2*[1 0 0 0;
8 0 1 0 0;
9 0 0 1 0;

10 0 0 0 1;] %2*eye(4);
11

12 Qc_est = 1e -5*[10 0 0 0;
13 0 25 0 0;
14 0 0 25 0;
15 0 0 0 1;] %1e-5* diag ([10 ,25 ,25 ,1]);
16

17 Qd_est=Qc_est*Ts;
18

19 R_est =0.02;
20 end
21

22 c=[1 0 0 0]; D=0; Ck=c; Dk=D;
23

24 %Comput Kalman Gain and update predicted value
25 Wk=P*Ck ’/(Ck*P*Ck ’+ R_est);
26

27 y_est=Ck*x_est_p+Dk*uk;
28

29 x=x_est_p+Wk.*( y_true -y_est);
30

31 %Compute prediction at next time step
32 x_est=x+Ts*[-x(2)*x(1)+uk*x(3)-x(4)*sign(x(1));
33 0 ;
34 0 ;
35 0 ];
36

37 %Update error covariance matrices
38 P=P-Wk*Ck*P;
39

40 %Define Ak
41 Ak=eye(4)+Ts*[-x(2) -x(1) uk -sign(x(1));
42 0 0 0 0 ;
43 0 0 0 0 ;
44 0 0 0 0 ]; % jacobian
45

46 P=Ak*P*Ak ’+ Qd_est;
47

48 x_est_p=x_est;
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DC Motor Control

In application of DC Motor, we want to be able to control its position and angular
velocity.

11.1 Velocity Control using PI Control
In this section we design a controller for dcmotor based on linearized dcmotor model using
2nd Order Differential Equation Design Workflow. From DC motor Model, we have:

ω̇(t) = −aω(t) + bva(t) (11.1)

We have to design a velocity controller, thus the feedback of the system is angular velocity
of the dc motor.
We have our PI control:

va(t) = Kp(ωd(t)− ω(t)) +Ki

∫ t

0

(ωd(t)− ω(t)) dt (11.2)

From Equation 11.1,we get:

va(t) =
1

b
ω̇d(t) +

a

b
ωd(t) (11.3)

From Equation 11.2 and Equation 11.3, we have our controller design:

va(t) =
1

b
ω̇d(t) +

a

b
ωd(t) +Kp(ωd(t)− ω(t)) +Ki

∫ t

0

(ωd(t)− ω(t)) dt (11.4)

Substitute Equation 11.4 back to model in Equation 11.1, we get:

ω̇(t) = −aω(t) + b

(
1

b
ω̇d(t) +

a

b
ωd(t) +Kp(ωd(t)− ω(t)) +Ki

∫ t

0

(ωd(t)− ω(t)) dt

)
(11.5)

0 = −ω̇(t)− aω(t) + ω̇d(t) + aωd(t) + bKp(ωd(t)− ω(t)) + bKi

∫ t

0

(ωd(t)− ω(t)) dt

0 = (ω̇d(t)− ω̇(t)) + a(ωd(t)− ω(t)) + bKp(ωd(t)− ω(t)) + bKi

∫ t

0

(ωd(t)− ω(t)) dt

0 = (ω̇d(t)− ω̇(t)) + (a+ bKp)(ωd(t)− ω(t)) + bKi

∫ t

0

(ωd(t)− ω(t)) dt

0 = ėω + (a+ bKp)eω + bKi

∫ t

0

eω dt

0 = ëω + (a+ bKp)ėω + bKieω ← take derivative to cancel integral.
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Figure 11.1: Velocity Control PI Controller

Thus, we get:
ëω + (a+ bKp)ėω + bKieω = 0 (11.6)

From 2nd Order differential equation standard form, we have:

Ẍ + 2ζωnX + ω2
nX = 0 (11.7)

From Equation 11.6 and Equation 11.7, we get:

a+ bKp = 2ζωn

bKi = ω2
n

Kp =
2ζωn − a

b

Ki =
ω2
n

b

From equation above, we want Kp > 0. Thus, 2ζωn > a, then ζωn > a
2

to ensure stability.

Velocity Control using PI Linear

Control input

va(t) =
1

b
ω̇d(t) +

a

b
ωd(t) +Kp(ωd(t)− ω(t)) +Ki

∫ t

0

(ωd(t)− ω(t)) dt

Control Tuning Constant

Kp =
2ζωn − a

b

Ki =
ω2
n

b

11.2 Velocity Control using PID Control
In this section we design a controller for dcmotor based on linearized dcmotor model using
2nd Order Differential Equation Design Workflow. From DC motor Model, We have our
PID control:

va(t) = Kp(ωd(t)− ω(t)) +Ki

∫ t

0

(ωd(t)− ω(t)) dt+Kd
d

dt
(ωd(t)− ω(t)) (11.8)
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From Equation 11.3 and Equation 11.8, we have our controller design:

va(t) =
1

b
ω̇d(t)+

a

b
ωd(t)+Kp(ωd(t)−ω(t))+Ki

∫ t

0

(ωd(t)−ω(t)) dt+Kd
d

dt
(ωd(t)−ω(t))

(11.9)
Substitute Equation 11.9 back to model in Equation 11.1, we get:

ω̇ = −aω + b

(
1

b
ω̇d +

a

b
ωd +Kp(ωd − ω) +Ki

∫ t

0

(ωd − ω) dt+Kd
d

dt
(ωd − ω)

)
(11.10)

0 = −ω̇ − aω + b(
1

b
ω̇d +

a

b
ωd +Kp(ωd − ω) +Ki

∫ t

0

(ωd − ω) dt+Kd
d

dt
(ωd − ω))

0 = −ω̇ − aω + ω̇d + aωd + bKp(ωd − ω) + bKi

∫ t

0

(ωd − ω) dt+ bKd
d

dt
(ωd − ω)

0 = (ω̇d − ω̇) + (a+ bKp)(ωd − ω) + bKi

∫ t

0

(ωd − ω) dt+ bKd
d

dt
(ωd − ω)

0 = (1 + bKd)(ω̇d − ω̇) + (a+ bKp)(ωd − ω) + bKi

∫ t

0

(ωd − ω) dt

0 = (1 + bKd)ėω + (a+ bKp)eω + bKi

∫ t

0

eω dt

0 = (1 + bKd)ëω + (a+ bKp)ėω + bKieω

Thus, we get:

(1 + bKd)ëω + (a+ bKp)ėω + bKieω = 0

ëω +
(a+ bKp)

(1 + bKd)
ėω +

bKi

(1 + bKd)
= 0

(11.11)

From 2nd Order differential equation standard form Equation 11.7, we have:

(a+ bKp)

(1 + bKd)
= 2ζωn

bKi

(1 + bKd)
= ω2

n

Velocity Control using PID Linear

Control input

va(t) = Kp(ωd(t)− ω(t)) +Ki

∫ t

0

(ωd(t)− ω(t)) dt+Kd
d

dt
(ωd(t)− ω(t))

Control Tuning Constant We have more freedom to choose Kp Ki Kd, that
satisfied :

(a+ bKp)

(1 + bKd)
= 2ζωn

bKi

(1 + bKd)
= ω2

n
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11.3 Position Control using PID Control
In this section we design a controller for dcmotor based on linearized dcmotor model
using 2nd/3rd Order Differential Equation Design Workflow. From DC motor Model,
We have our PID control:

va(t) = Kp(θd(t)− θ(t)) +Ki

∫ t

0

(θd(t)− θ(t)) dt+Kd
d

dt
(θd(t)− θ(t)) (11.12)

From Equation 11.1, it can be written in form of position as:

θ̈(t) = −aθ̇(t) + bva(t) (11.13)

Thus, we get:

va(t) =
1

b
θ̈d(t) +

a

b
θ̇d(t) (11.14)

From Equation 11.13 and Equation 11.14, we have our controller design:

va(t) =
1

b
θ̈d(t) +

a

b
θ̇d(t) +Kp(θd(t)− θ(t)) +Ki

∫ t

0

(θd(t)− θ(t)) dt+Kd
d

dt
(θd(t)− θ(t))

(11.15)
Substitute Equation 11.15 to Equation 11.13, we get:

θ̈ = −aθ̇ + b

(
1

b
θ̈d +

a

b
θ̇d +Kp(θd − θ) +Ki

∫ t

0

(θd − θ) dt+Kd
d

dt
(θd − θ)

)
(11.16)

θ̈ = −aθ̇ + θ̈d + aθ̇d + bKp(θd − θ) + bKi

∫ t

0

(θd − θ) dt+ bKd
d

dt
(θd − θ)

0 = −θ̈ − aθ̇ + θ̈d + aθ̇d + bKp(θd − θ) + bKi

∫ t

0

(θd − θ) dt+ bKd
d

dt
(θd − θ)

0 = (θ̈d − θ̈) + a(θ̇d − θ̇) + bKp(θd − θ) + bKi

∫ t

0

(θd − θ) dt+ bKd(θ̇d − θ̇)

0 = (θ̈d − θ̈) + (a+ bKd)(θ̇d − θ̇) + bKp(θd − θ) + bKi

∫ t

0

(θd − θ) dt

0 = ëθ + (a+ bKd)ėθ + bKpeθ + bKi

∫ t

0

eθ dt

0 =
...
e θ + (a+ bKd)ëθ + bKpėθ + bKieθ

Thus, we get: ...
e θ + (a+ bKd)ëθ + bKpėθ + bKieθ = 0 (11.17)

is the 3rd order differential equation with the characteristic form of:

λ3 + (a+ bKd)λ
2 + bKpλ+ bKi = 0 (11.18)

From Equation 11.18, we know that in 3rd order differential equation characteristic poly-
nomial, there exist 3 roots and at least 1 root is real root (denoted by λ1).Thus, we can
write:

(λ+ λ1)(λ
2 + 2ζωnλ+ ω2

n) = 0

λ3 + 2ζωnλ
2 + ω2

nλ+ λ1λ
2 + 2ζωnλλ1 + ω2

nλ1 = 0

λ3 + (2ζωn + λ1)λ
2 + (2ζωnλ1 + ω2

n)λ+ ω2
nλ1 = 0

(11.19)
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From Equation 11.18 and Equation 11.19, we have:

a+ bKd = 2ζωn + λ1

bKp = 2ζωnλ1 + ω2
n

bKi = ω2
nλ1

Kd =
2ζωn + λ1 − a

b

Kp =
2ζωnλ1 + ω2

n

b

Ki =
ω2
nλ1

b

Velocity Control using PID Linear

Control input

va(t) = Kp(θd(t)− θ(t)) +Ki

∫ t

0

(θd(t)− θ(t)) dt+Kd
d

dt
(θd(t)− θ(t))

Control Tuning Constant

Kd =
2ζωn + λ1 − a

b

Kp =
2ζωnλ1 + ω2

n

b

Ki =
ω2
nλ1

b
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Chapter 12

DC Motor Cascade Control

12.1 Outer P Velocity and Inner PI Torque Control
Design

In this section, we design a cascade controller for dcmotor with Outer Propositional
Velocity and Inner Propositional Integral Torque Control Design.

+−
+− +−

ωd

ω

ωeω P
τd

τ

τ
PI ueτ 1

R
i Kt

Kt

1
Js+D

comp

Assumption L = 0, Kb = Kt, T c ̸= 0 From the Architecture, We have:

• u = Kpieτ +Kii

∫
eτdt+ comp

• eω = ωd − ω => ėω = ω̇d − ω̇

• eτ = τd − τ => ėτ = τ̇d − τ̇

• τd = Kpoeω => τ̇d = Kpoėω

From the Model of DC Model, We have:

u = Ktω +Ri

=> i =
u−Ktω

R

We have:
τ = Kti = Tc+Dω + Jω̇

By Substitute i in, We get:

Kt
u−Ktω

R
= Tc+Dω + Jω̇

RTc +RDω +RJω̇ = Kt(u−Ktω)

RJ

Kt

ω̇ +
RD +K2

t

Kt

ω +
RTc

Kt

= u
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Substitute u in, We get:

RJ

Kt

ω̇ +
RD +K2

t

Kt

ω +
RTc

Kt

= Kpieτ +Kii

∫
eτdt+ comp

Take Derivative to eliminate integral:

RJ

Kt

ω̈ +
RD +K2

t

Kt

ω̇ = Kpiėτ +Kiieτ + ˙comp

RJ

Kt

ω̈ +
RD +K2

t

Kt

ω̇ = Kpi(τ̇d − τ̇) +Kii(τd − τ) + ˙comp

From the model, We have:

τ = Tc +Dω + Jω̇ => τ̇ = Dω̇ + Jω̈

We get:

RJ

Kt

ω̈ +
RD +K2

t

Kt

ω̇ = Kpi(Kpoėω − (Dω̇ + Jω̈)) +Kii(Kpoeω − (Tc +Dω + Jω̇)) + ˙comp

RJ

Kt

ω̈ +
RD +K2

t

Kt

ω̇ = Kpi(Kpoėω −Dω̇ − Jω̈) +Kii(Kpoeω − Tc −Dω − Jω̇) + ˙comp

RJ

Kt

ω̈ +
RD +K2

t

Kt

ω̇ = KpiKpoėω −KpiDω̇ −KpiJω̈ +KiiKpoeω −KiiTc −KiiDω −KiiJω̇ + ˙comp

RJ

Kt

ω̈ +
RD +K2

t

Kt

ω̇ +KpiDω̇ +KpiJω̈ +KiiDω +KiiJω̇ = KpiKpoėω +KiiKpoeω −KiiTc + ˙comp

(
RJ

Kt

+KpiJ)ω̈ + (
RD +K2

t

Kt

+KpiD +KiiJ)ω̇ +KiiDω = KpiKpoėω +KiiKpoeω −KiiTc + ˙comp

Multiply both side by -1 to reverse the sign:

−(RJ

Kt

+KpiJ)ω̈−(
RD +K2

t

Kt

+KpiD+KiiJ)ω̇−KiiDω = −KpiKpoėω−KiiKpoeω+KiiTc− ˙comp

Adding both of the equation for compensation with :

+ (
RJ

Kt

+KpiJ)ω̈d

+ (
RD +K2

t

Kt

+KpiD +KiiJ)ω̇d

+KiiDωd

We get:
On LHS:

(
RJ

Kt

+KpiJ)(ω̈d − ω̈) + (
RD +K2

t

Kt

+KpiD +KiiJ)(ω̇d − ω̇) +KiiD(ωd − ω) =

On RHS:

= −KpiKpoėω−KiiKpoeω+KiiTc− ˙comp+(
RJ

Kt

+KpiJ)ω̈d+(
RD +K2

t

Kt

+KpiD+KiiJ)ω̇d+KiiDωd
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Then:
On LHS:

(
RJ

Kt

+KpiJ)ëω + (
RD +K2

t

Kt

+KpiD +KiiJ)ėω +KiiDeω +KpiKpoėω +KiiKpoeω =

On RHS:

= KiiTc − ˙comp+ (
RJ

Kt

+KpiJ)ω̈d + (
RD +K2

t

Kt

+KpiD +KiiJ)ω̇d +KiiDωd

On LHS:

(
RJ

Kt

+KpiJ)ëω + (
RD +K2

t

Kt

+KpiD +KiiJ +KpiKpo)ėω + (KiiD +KiiKpo)eω =

On RHS:

= KiiTc − ˙comp+ (
RJ

Kt

+KpiJ)ω̈d + (
RD +K2

t

Kt

+KpiD +KiiJ)ω̇d +KiiDωd

On the LHS, Using the 2nd Order Differential Standard Form : Ẍ + 2ζωnẊ + ω2
nX = 0,

We get:

2ζωn =
(
RD+K2

t

Kt
+KpiD +KiiJ +KpiKpo)

(RJ
Kt

+KpiJ)

ω2
n =

(KiiD +KiiKpo)

(RJ
Kt

+KpiJ)

We solve above equation for Kpi and Kii in terms of Kpo, ζ, ωn, We get:

Kpi = −
D2R + J2Rω2

n + kpo(K
2
t − 2JRωnζ) +D(K2

t +R(kpo − 2Jωnζ))

Kt(D2 + k2
po + J2ω2

n − 2Jkpoωnζ + 2D(kpo − Jωnζ))

Kii =
J(−K2

t + kpoR)ω2
n

Kt(D2 + k2
po + J2ω2

n − 2Jkpoωnζ + 2D(kpo − Jωnζ))

On the RHS, We have our compensation:

˙comp = KiiTc + (
RJ

Kt

+KpiJ)ω̈d + (
RD +K2

t

Kt

+KpiD +KiiJ)ω̇d +KiiDωd

comp =

∫ [
KiiTc + (

RJ

Kt

+KpiJ)ω̈d + (
RD +K2

t

Kt

+KpiD +KiiJ)ω̇d +KiiDωd

]
dt
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Chapter 13

Kalman Filter

Kalman Filter was found by Dr. Rudolf Emil Kálmán. This algorithm is a powerful
filtering algorithm that has been used in many applications most notably in signal pro-
cessing, control, optimization, sensor fusion, system identification -etc , and it is able to
be implemented online.

13.1 Kalman Filter (Linear System)

Consider a linear discrete time system as following:

xk+1 = Axk +Buk + vk

yk+1 = Cxk+1 +Duk+1 + wk+1

(13.1)

Where:

• xk ∈ Rnx state system

• uk ∈ Rnu input system

• yk ∈ Rnz measurement system

• A ∈ Rnx×nx system matrix

• C ∈ Rnz×nx observation matrix

• B ∈ Rnx×nu some matrix

• D ∈ Rnz×nu some matrix

• vk ∈ Rnx independent process noises

• wk ∈ Rnz independent measurement noises

• Q ∈ Rnx×nx Gaussian covariance matrix of v

• R ∈ Rnz×nz Gaussian covariance matrix of w

Apply Kalman Filter on the system
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Initialize Select any

• x̂0|0 initial state estimate

• P0|0 positive definite error covariance matrix

Time Update

x̂k+1|k = Ax̂k|k +Buk

Pk+1|k = APk|kA
T +Q

(13.2)

Measurement Update

ŷk+1|k = Cx̂k+1|k +Duk+1

Pxy,k+1|k = Pk+1|kC
T

Pyy,k+1|k = CPk+1|kC
T +R

x̂k+1|k+1 = x̂k+1|k + Pxy,k+1|kP
−1
yy,k+1|k(yk − ŷk+1|k)

Pk+1|k+1 = Pk+1|k − Pxy,k+1|kP
−1
yy,k|k+1P

T
xy,k+1|k

(13.3)

In terms of Kalman Gain,

Kk+1 = Pxy,k+1|kP
−1
yy,k+1|k

x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1 − Cx̂k+1|k −Duk+1)

Pk+1|k+1 = Pk+1|k −Kk+1Pyy,k+1|kK
T
k+1

(13.4)

13.2 Extended Kalman Filter (Nonlinear System)
Consider a nonlinear discrete time system as following:

xk+1 = fd(xk + uk) + vk

yk+1 = hd(xk+1, uk+1) + wk+1

(13.5)

Where:

• xk ∈ Rnx state system at discrete time

• uk ∈ Rnu input system

• yk ∈ Rnz measurement

• fd some known function

• hd some known function

• vk ∈ Rnx independent process noises

• wk ∈ Rnz independent measurement noises

Apply Extended Kalman Filter on the system



13.3. UNSCENTED KALMAN FILTER (NONLINEAR SYSTEM) 81

Initialize Select any

• x̂0|0 initial state estimate

• P0|0 positive definite error covariance matrix

Time Update

x̂k+1|k = fd(x̂k|k, uk)

Pk+1|k = AkPk|kA
T
k +Q

(13.6)

Measurement Update

ŷk+1|k = hd(x̂k+1|k, uk+1)

Pxy,k+1|k = Pk+1|kC
T
k+1

Pyy,k+1|k = Ck+1Pk+1|kC
T
k+1 +R

x̂k+1|k+1 = x̂k+1|k + Pxy,k+1|kP
−1
yy,k+1|k(yk+1 − ŷk+1|k)

Pk+1|k+1 = Pk+1|k − Pxy,k+1|kP
−1
yy,k|k+1P

T
xy,k+1|k

(13.7)

In terms of Kalman Gain,

Kk+1 = Pxy,k+1|kP
−1
yy,k+1|k

x̂k+1|k+1 = x̂k+1|k +Kk+1[yk+1 − hd(x̂k+1|k, uk+1)]

Pk+1|k+1 = Pk+1|k −Kk+1Pyy,k+1|kK
T
k+1

(13.8)

Where from linearization of nonlinear function fd and hd using a Taylor series expansion,
We get Jacobian matrix:

Ak =
∂fd
∂x
|x=x̂k|k

Ck+1 =
∂hd

∂x
|x=x̂k+1|k

13.3 Unscented Kalman Filter (Nonlinear System)

Consider a nonlinear discrete time system as following:

xk+1 = fd(xk + uk) + vk

yk+1 = hd(xk+1, uk+1) + wk+1

(13.9)

Apply Unscented Kalman Filter on the system

Initialize

• x̂0|0 initial state estimate

• P0|0 positive definite error covariance matrix
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Time Update

Xk|k = [x̂k|k ... x̂k|k] +
√

nx + λ[0
√

Pk|k −
√
Pk|k]

Xk+1|k = fd(Xk|k, uk)

x̂k+1|k = Xk+1|kwm

Pk+1|k = Xk+1|kWXT
k+1|k +Q

(13.10)

Measurement Update

X
(r)
k+1|k = [x̂k+1|k ... x̂k+1|k] +

√
nx + λ[0

√
Pk+1|k −

√
Pk+1|k]

Yk+1|k = hd(X
(r)
k+1|k, uk+1)

ŷk+1|k = Yk+1|kwm

Pxy,k+1|k = X
(r)
k+1|kWY T

k+1|k

Pyy,k+1|k = Yk+1|kWY T
k+1|k +R

Kk+1 = Pxy,k+1|kP
−1
yy,k+1|k

x̂k+1|k+1 = x̂k+1|k +Kk+1(yk+1 − ŷk+1|k)

Pk+1|k+1 = Pk+1|k −Kk+1Pyy,k+1|kK
T
k+1

(13.11)



Chapter 14

Sensor Fusion

For filtering out noise of sensor and predicting the future change of state when there is
an absence of sensor data, we use method of sensor fusion. There numerous way of doing
a sensor fusion. Below are some of the application for sensor fusion.

14.1 Differential Drive Robot Sensor Fusion for Linear
and Angular Velocity

In differential drive robot, we have a position model:ẋẏ
θ̇


global

=

V cos θ
V sin θ

ω

 (14.1)

Where:

•

ẋẏ
θ̇


global

is rate of change of position of the robot inside a global frame reference

• θ is the heading angle of the robot inside a global frame

• V is the linear velocity of the robot inside a local robot frame

• ω is the angular velocity of the robot inside a local robot frame

Our purpose is to estimate the V and ω

Those two variable can be calculated from two sources: Wheel Encoder and IMU.

14.1.1 From Wheel Encoder

From differential drive robot kinematic model, We have:

V (t) = ϕ̇r
r

2
+ ϕ̇l

r

2
(14.2)

ω(t) = ϕ̇r
r

L
− ϕ̇l

r

L
(14.3)

Where:

83



84 CHAPTER 14. SENSOR FUSION

• ϕ̇r is the rotation velocity of the right wheel

• ϕ̇l is the rotation velocity of the left wheel

• r is the wheel radius

• L is the robot based length

Wheel rotation velocity is calculated from the wheel encoder by:

ϕ̇ =
ϕk+1 − ϕk

Ts

(14.4)

ϕ =
2× π × encoder ticks

GearBox× Pulse per Revolution
(14.5)

14.1.2 From IMU Sensor

We have:
V̇ = aimu−x + b (14.6)

ω = ωimu + b (14.7)

Where:

• aimu−x is the imu accelerometer in x-axis local frame

• ωimu−z is the imu gyroscope in z-axis local frame

• b is the biased of imu measurement

14.1.3 Estimate V

From model:

V̇ = aimu−x + b

ḃ = 0
(14.8)

Let:

x1 = V → ẋ1 = aimu−x + b

x2 = b→ ẋ2 = 0

Discretized the model:

x1,k+1 = x1,k + aimu−x,kTs + bTs

x2,k+1 = x2,k

Or:

x1,k+1 = x1,k + ukTs + x2,kTs

x2,k+1 = x2,k



14.1. DIFFERENTIAL DRIVE ROBOT SENSOR FUSION FOR LINEAR AND ANGULAR VELOCITY85

In state space form, we have a model:[
x1

x2

]
k+1

=

[
1 Ts

0 1

] [
x1

x2

]
k

+

[
Ts

0

]
uk (14.9)

Or: [
V
b

]
k+1

=

[
1 Ts

0 1

] [
V
b

]
k

+

[
Ts

0

]
aimu−x,k (14.10)

We have a output model:

yk =
[
1 0

] [x1

x2

]
k

=
[
1 0

] [V
b

]
k

(14.11)

Check observability:

obs =

[
C
CA

]
We have:

A =

[
1 Ts

0 1

]
and C =

[
1 0

]
→ obs =

[
1 0
1 Ts

]
is full rank = observable.

Apply Kalman Filter on the system

Initialize:

• x̂0|0 =

[
0
0

]

• P0|0 =

[
1 0
0 1

]

• A =

[
1 Ts

0 1

]

• B =

[
Ts

0

]
• C =

[
1 0

]
• Q =

[
0.00001 0

0 0.00001

]

• R =

[
0.00001 0

0 0.00001

]
• uk = aimu−x,k

• yk = Vencoder,k
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Time Update

x̂k+1|k = Ax̂k|k +Buk

Pk+1|k = APk|kA
T +Q

Measurement Update

ŷk+1|k = Cx̂k+1|k

Pxy,k+1|k = Pk+1|kC
T

Pyy,k+1|k = CPk+1|kC
T +R

x̂k+1|k+1 = x̂k+1|k + Pxy,k+1|kP
−1
yy,k+1|k(yk − ŷk+1|k)

Pk+1|k+1 = Pk+1|k − Pxy,k+1|kP
−1
yy,k|k+1P

T
xy,k+1|k

14.1.4 Estimate ω

From model:

ωk+1 = ωimu−z + bk

bk+1 = bk
(14.12)

Let:

x1 = ω → ẋ1 = 0

x2 = b→ ẋ2 = 0

Discretized the model:

x1,k+1 = ωimu−z + bk

x2,k+1 = bk

Or:

x1,k+1 = uk + x2,k

x2,k+1 = x2,k

In state space form, we have a model:[
x1

x2

]
k+1

=

[
0 1
0 1

] [
x1

x2

]
k

+

[
1
0

]
uk (14.13)

Or: [
ω
b

]
k+1

=

[
0 1
0 1

] [
ω
b

]
k

+

[
1
0

]
ωimu−z (14.14)

We have a output model:

yk =
[
1 0

] [x1

x2

]
k

=
[
1 0

] [ω
b

]
k

(14.15)

Check observability:

obs =

[
C
CA

]
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We have:

A =

[
0 1
0 1

]
and C =

[
1 0

]
→ obs =

[
1 0
0 1

]
is full rank = observable.

Apply Kalman Filter on the system

Initialize:

• x̂0|0 =

[
0
0

]

• P0|0 =

[
1 0
0 1

]

• A =

[
0 1
0 1

]

• B =

[
1
0

]
• C =

[
1 0

]
• Q =

[
0.00001 0

0 0.00001

]

• R =

[
0.00001 0

0 0.00001

]
• uk = ωimu−z

• yk = ωencoder,k

Time Update

x̂k+1|k = Ax̂k|k +Buk

Pk+1|k = APk|kA
T +Q

Measurement Update

ŷk+1|k = Cx̂k+1|k

Pxy,k+1|k = Pk+1|kC
T

Pyy,k+1|k = CPk+1|kC
T +R

x̂k+1|k+1 = x̂k+1|k + Pxy,k+1|kP
−1
yy,k+1|k(yk − ŷk+1|k)

Pk+1|k+1 = Pk+1|k − Pxy,k+1|kP
−1
yy,k|k+1P

T
xy,k+1|k
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14.2 Three Wheels Omnidrive Robot Sensor Fusion for
Linear and Angular Velocity

We have a model:

V̇x = aimu−x + bx

V̇y = aimu−y + by

ḃx = 0

ḃy = 0

(14.16)

Let:

x1 = Vx → ẋ1 = V̇x = aimu−x + bx

x2 = Vy → ẋ2 = V̇y = aimu−y + by

x3 = bx → ẋ3 = ḃx = 0

x4 = by → ẋ4 = ḃy = 0

Discretized the model:

x1,k+1 = x1,k + aimu−xTs + bxTs

x2,k+1 = x2,k + aimu−yTs + byTs

x3,k+1 = x3,k

x4,k+1 = x4,k

Or:

x1,k+1 = x1,k + aimu−xTs + x3,kTs

x2,k+1 = x2,k + aimu−yTs + x4,kTs

x3,k+1 = x3,k

x4,k+1 = x4,k

In state space form, we have a model:
Vx

Vy

bx
by


k+1

=


x1

x2

x3

x4


k+1

=


1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1



x1

x2

x3

x4


k

+


Ts 0
0 Ts

0 0
0 0

[
aimu−x

aimu−y

]
(14.17)

We have a output model:

yk =

[
1 0 0 0
0 1 0 0

]
x1

x2

x3

x4


k

=

[
1 0 0 0
0 1 0 0

]
Vx

Vy

bx
by


k

(14.18)

Check observability:

obs =

[
C
CA

]
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We have:

A =


1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1

 and C =

[
1 0 0 0
0 1 0 0

]

→ obs =


1 0 0 0
0 1 0 0
1 0 Ts 0
0 1 0 1

 is full rank = observable.
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