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Chapter 1

Transfer Function

Transfer Function is the ratio of Laplace Transform of Output of the system to the Laplace
Transform of Input of the system, when all the initial condition are assumed to be zero.
(Very important that if it is not zero then the system is not Linear Time Invariant)(We
can not take a Laplace Transform of a nonlinear system). Let:

e x(t) is Input of the system
e y(t) 1is Output of the system
e h(t) is the system

We have:

Y(s) = X(s) = H(s) (1.2)
By convolution property:
H(s) = )};8 (1.3)

1.1 Example of Determine a Transfer Function

System 1 Determine a Transfer Function of a system below:

dPy(t) . dy(t)
gz T3

+2y(t) = z(t)

Solution We have:
e z(t) is Input of the system
e y(t) is Output of the system

Taking Laplace Transform of the system:

d*y(t) dy(t)
gz T

L] +2y(t)] = L[z (t)]



CHAPTER 1. TRANSFER FUNCTION
We get:
d?y(t '
/Iy ey (o) - sy(07) — y/(07)
dy(t)
™)

LIX(®)] = X(5)
s?Y (5) — sY(07) — /(07) + 3[sY (s) — y(0)] +2Y (s) = X(s)
Put Initial Condition to zero, we get:

s?Y (s) + 3sY (s) +2Y (s) = X(s)

Y (s)[s® 4+ 3s + 2] = X(s)

Y(s) 1
X(s)  s2+3s+2
S H(s) =

s2+3s+2
1
— | H(s) = (s+1)(s+2)

System 2 Determine a Transfer Function of a system below:

O(t) = k(dres(t) — 0(1))
Solution
1.

E¢(t) = ¢ref(t) - (b(t)

1.
£O(E) + 6(1) = brer 1)
Taking Laplace Transform of the system:

LI7o(t) + o(t)] = Llgres (1))
We have:

o Pres(t)

is Input of the system
° ¢(t)

is Output of the system

%SY(S) +Y(s) = X(s)

Y (s)[2s + 1] = X(s)

k
_)Y(s)_ 1
X(s) Lis+1
1
—|H(s) =5
ES—i—l




1.2. EXAMPLE OF DETERMINE SYSTEM FROM TF

System 3 Determine a Transfer Function of a system below

O(t) = k(res(t) — (1))
Solution
1

Li6) + y() = (1)
Taking Laplace Transform of the system:

LI +9(0)] = £la(0)

ESQY(S) +Y(s) = X(s)

Y(S)[%SQ +1] = X(s)
1
= [ H) = £s2 + 1

System 4 Determine a Transfer Function of a system below:

§(t) + ky(t) = kx(t)

Solution Taking Laplace Transform of the system:

s%Y (s) + kY (s) = kX (s)

Y (s)[s? + k] = kX (s)

— | H(s) = i

2+ k

1.2 Example of Determine System from TF

Below is a system transfer function that transfer wheel position 6 to wheel velocity 6.
Determine the system function and discretize it. We have a TF":

s
as+ 1

(as +1)Y(s) = sX(s)

asY(s) +Y(s) = sX(s)
Taking a Reverse Laplace Transform:

agy(t) +y(t) = (1)
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Discretize the model:

Yo =Yk _ L 1Tk =T
T, ayk a T,
T, 1
Ykl — Y& = —— Yk + —(Tpg1 — 7)
a a

Yrs1 = Uk — — Yk + —(Thr1 — 1)
a a

T. 1
Yk = (1 — f)yk + a(fckﬂ — x)

. T, . 1
— g1 = (1 — ;)Hk + E(ek—i-l —0k)




Chapter 2

1st Order Differential Equation

Differential equation is set an equation that its solution is a function and involve of its
derivative. In engineering, these equations is usually used to govern a dynamics system
model and the rate of change of state. In 1st Order Differential Equation is equation
consist of first derivative of function in form:

4 Ple)y = Q)

Where :

e P(z) is function of x

e ((x) is function of x

2.1 Method of Solving 1st Order Homogeneous Differ-
ential Equation

2.1.1 Method of Separation of Variable

Method

When to use the Method All y,dy term and x,dx can explicitly move to
different side of the equation. For example:

2z
dx i
d
— Y _ Sxdx
)

How to use the Method
e Step 1 : Move all y,dy term and z, dx to different side of the equation.

e Step 2 : Integrate both side with respect to dz and dy respectively.

e Step 3 : Simplify the equation.

11
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Example Solve:

e Step 1

e Step 2

e Step 3

CHAPTER 2. 1ST ORDER DIFFERENTIAL EQUATION

dy
-7 _5
dx w
d
—y:5xdx
Yy
1
/—dy:5/xdx
Yy
5
ln|y|:§x2+c

Y= Ce3™ « Solution

2.2 Method of Solving 1st Order Non-Homogeneous
Differential Equation

2.2.1 Method of Variable Substitution

Method

equation of:

for v.

e Step 5 :
function.

When to use the Method Use in general form of 1st order linear differential

How to use the Method

e Step 1 : Substitute y = uv and Z—gyc = ug—z + 0% to equation.
e Step 2 : Factoring v out. example: v(term_u,term _x).
e Step 3 : Put v term equal to zero and solve for u using separation of variable.

e Step 4 : Substitute u back to equation Step 2 where v term is zero and Solve

After getting u and v, substitute back into y = uv for a solution of

Y+ Pl = Q)

d
d




2.2. METHOD OF SOLVING 1ST ORDER NON-HOMOGENEOUS DIFFERENTIAL EQUATION13

Example Solve:

dy y
A
dr =«
e Step 1
u@ + vd—u _ 1
dx dv x©
e Step 2
dv du u
LIt R |
uda: +U(dm x)
e Step 3
du u
=0
(da: a:)
du _u
dr =
du_ds
u oz
du [ dx
u x
In|u| = Injz| + C
In|u] = In|z| + In|K| + let C = In|k| make easier
u= Kx
e Step 4
dv
Kr— =1
xdx
1
dv=—d
v=gode
1 1
1
v = E(ln|x! + D)
1
v = ?ln|Lx|
e Step b

Our Solution is:

1
Yy =uv = Kx?ln|Lx| = xln|Lx|
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2.2.2 Method of Integrating Factor

Method

Use in general form of 1st order linear differential equation of:

&+ Plaly = Q)

How to use the Method
e Step 1 : Calculate Integrating Factor I(z) = e/ P(®)dz,
e Step 2 : Multiply both side of the equation by I(x)
e Step 3 : Form 2L (y.I(z)) = I(z)Q(z) and Integrate both side by dx.

e Step 4 : Solve for y and simplify.

Example Solve:

d
cos(:c)d—y + sin(z)y =1

x
Then : d 1
Y _
)
We have P(z) = tan(z) and Q(x) = cosl(x)
e Step 1
I(ZL‘) _ ef P(z)dz _ eftan(x)d:c — eln\sec(x)\ — S€C($)
e Step 2
1
sec(x)—x + sec(x)tan(x)y = Sec(x)cos(x)
sec(x)d—y + sec(x)tan(x)y = sec”(x)
x
e Step 3
i( sec(r)) = sec®(x)
dz N
/%(y.sec(m))dm = /secQ(x)d:E
y.sec(x) = /secZ(x)dx
y.sec(x) = tan(x) + C
e Step 4
y.sec(x) = tan(z) + C
_ tan(z) +C
— sec(x)

y = sin(z) + Ccos(x)



Chapter 3

2nd Order Differential Equation

Differential equation is set an equation that its solution is a function and involve of its
derivative. In engineering, these equations is usually used to govern a dynamics system
model and the rate of change of state. In 2nd Order Differential Equation is equation
consist of second and first derivative of function in form:

d*y

dy
g2 TP+ Qa)y = f(z)

3.1 Method of Solving 2nd Order Homogeneous Differ-
ential Equation

The 2nd Order Homogeneous Differential Equation has the form of:
d’y dy
_— P _— —
Tr2 + (a:)dx +Q(x)y=0

3.1.1 Method of Using Characteristic Equation

Method

Where Does it come from ? We propose a solution the 2nd Order Homoge-
neous Differential Equation above where:

y=e
Thus 5
Q o T2€rm
dx?
dy ra
— =re
dx

Substitute to the equation:

r2e™ 4+ P(z)re™ + Q(x)e™ =0
e (r* + P(z)r + Q(z)) =0
The term €™ can not go to zero, thus the term 72 + P(z)r + Q(x) will go to zero.

The term 2+ P(z)r+Q(z) is the second order polynomial equation where we have
three different form of solution.

15



16 CHAPTER 3. 2ND ORDER DIFFERENTIAL EQUATION

e A > 0the equation has 2 distinct real roots r; and ry
e A = 0 the equation has repeated real root r
e A < Othe equation has 2 complex conjugated roots r;, = a+pi and o = a— i
If:
e A > (the solution has a form of y = Ae"* + Be™*
e A = 0 the solution has a form of y = Ae™ + Bxe'™
e A < (the solution has a form of
— y = AeletBie 4 Bela—piz
— y = e®(AeP® + Be FiT)
— y = e*®*(Acos(fx) + iBsin(Bx)) (From euler’s formula e = cos(z) +
How to use it
e Step 1 : Form a Characteristic Equation from the equation ar? + br + ¢ = 0.

e Step 2 : Find A and roots of the equation.

e Step 3 : Plug the result into three of the solution form and determine the
constants using initial condition.

Example 1 Solve:

%—93—z+20y20
e Step 1

72 —9r+20 =0
e Step 2

A>0,r=4ry=>5
e Step 3

y = Ae*® + Be™

Example 2 Solve:

d?y dy
— —10—=+25y =0
dx? dx + 2oy

e Step 1
r2—10r+25=0

e Step 2



3.2. METHOD OF SOLVING 2ND ORDER NON-HOMOGENEOUS DIFFERENTIAL EQUATIONI’

A=0,r=5

e Step 3

y = Ae’™ + Bxe®®

Example 3 Solve:

Py dy

— 4=+ 13y =

dx? dx+3y 0
e Step 1

r?—4r+13=0
e Step 2
A<0,r=2+3i,r9=2—31i

e Step 3

y = e**(Acos(3x) + iBsin(3z))

3.2 Method of Solving 2nd Order Non-Homogeneous
Differential Equation

The 2nd Order Non-Homogeneous Differential Equation has the form of:

The solution of the 2nd Order Non-Homogeneous Differential Equation has a combination
of General solution and Particular solution y = y;, +y,. The General solution is found by
finding the solution of the equation in its homogeneous form while the Particular solution
is found by finding the solution of the equation in its non-homogeneous.
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3.2.1 Method of Undetermined Coeflicients

Method

How to use it
e Step 1 : Find y; from the equation in homogeneous form.
e Step 2 : Propose y, by guessing the form of solution from the non-
homogeneous term. Use the table for help. And determine the constants
of the y,.
e Step 3 : Find y = vy, +y, and Find remaining constants from initial equation.
f(z) Yp
1 a
ox + 7 ar +b
3z? —2 az’ +b+c
G — gL ax® + bz’ +cx +d
sindx acosdx + bsindx
Table of solution form cosdx acosdx + bsindx
bx bx
e ae
(92 — 2)e™® (az + b)e™®
z2e>® (az* + b+ c)e™®
e sindx ae’*cosdx + be3*sindx
Sx’sindr | (ax® + b+ c)cosdx + (da? + e + f)sindx
recosdx (az + b)e’*cosdx + (cx + d)e> sindx
Example Solve:
d*y 2
Tz y=2r"—x-3
e Step 1
r?—1=
A > 0,71 =1,y =—1
yp, = Ae'® + Be™'*
e Step 2

Let guess the form based on the 222 — x — 3, because of it is a polynomial let guess
Yp = ax?® +br +c

d
% =2ar+b
d*y, 5



3.2. METHOD OF SOLVING 2ND ORDER NON-HOMOGENEOUS DIFFERENTIAL EQUATIONI

Substitute back to equation
2a — (az® +bx +¢) =22 —2—3
20 —ar? —br —c=22" —2x — 3

—ax’ —br+2a—c=21>—2—3

—a =2

—b=-1

20 —c= -3

—a=—2

—b=1

—c=-—1

Thus
yp:—2x2—|—x—1
e Step 3

y=Ae" + Be ™" — 227 42— 1
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Chapter 4

2nd Order ODE Standard Form

This section, we study on system of 2nd Order ODE with Standard Form Natural Fre-
quency and Damping Ratio.

4.1 Spring Mass Damper Modeling

(Free Body Diagram)

—kx(t) — bz (t) = mi(t)
mi(t) + kx(t) + bz (t) =0
x+%:‘c+£x(t) =0

Let have the differential model above to look like the General Standard Form of :

B(t) 4 2Cwpd(t) + wla(t) =0

Where :
e ( is damping ratio
e w, is natural frequency

Thus, we have :

b _ b
° E—QCwn%C—Qrm
E _ 2 _ Jk
.%—Wnéwn— m

Let solve the Standard Form x(t):
B(t) 4 2Cwpd(t) + wia(t) =0
Using Laplace Transform :

52X (s) — 52(0) — 2(0) + 2¢wn(sX (s5) — 2(0)) + w? X (s)
$2X (5) — 8w — o + 2Cwn (s X (5) — 20) + w2 X(5)

0
0

21



22 CHAPTER 4. 2ND ORDER ODE STANDARD FORM

sxo + To + 2(wn Ty
$2 + 2Cwps + w?

X(s) =

Let Find the root of the Denominator of X(s). From solving the 2nd order quadratic
formula, we have the root :

—2Cw,, £ +/(2¢w,,)? — 4w?
S1,2 = W \/(2 on) “n —Cwp £wp/ (2 —1

From the root, we can see that there are 3 cases:
e Distinct Real Root

e Double Real Root

e Complex Root

4.1.1 Distinct Real Roots

To have the Distinct Real Root Case, We need:

(2¢wn)? — 4w? >0
4Cw? — 4w? >0

42(¢*—1) >0
(¢*=1)>0
¢ >1

¢>1

We get Over-damped Case from the damping ratio of

4.1.2 Double Real Root

To have the Double Real Root Case, We need:

(2¢wn)? —4w? =0

ACPWE — 4w’ =

42(*—1)=0
(¢*-1=0
=1

¢=1

We get Critically damped Case from the damping ratio of . From the mathematical
perspective, the damping ratio is unity (1) mean Critically damped. Where some people
from control perspective prefer the damping ratio of \/Li to be Critically damped.
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4.1.3 Complex Root
To have the Complex Root Case, We need:
(2¢wn)? —4w? <0
4?2 — w2 <0
42(C*—=1) <0
(¢*-1)<0
<1
(<1

4.2 Discussion of Each Cases

4.2.1 Over-damped Case (( > 1)

Above equation can be written as:

sxo + To + 2(w, T ay Qs
= +
52 4+ 2Cwy, s + w? s+r1 s+

X(s) =

After using Partial Fraction Decomposition, we get:

— o + To(—Cwn + /(¢* — Dwy)
2¢/(¢? = Dwy

a; =

0 — To + xg(Cwn + ({2 - 1)0)721)
2 2/ - 1e?
Thus the solution of differential equation Z(t) + 2¢w,%(t) + w2z (t) = 0 where z(0) =
.To,x(O) = .1"0 is :
x(t) = are™t + aze™!

Where:
a = —j?o + xo(—Cwn + (C2 — 1)(,0%)
b 2\/(C— D)
0 — Zo + xo(Cwn + /(C2 — Dw?)
o 2,/((— D)2

r1, 79 = —Cwy £ wp/ (2 — 1

4.2.2 Critically damped Case (( = 1)

We have the root : 71,17y = —(w, T wp/(? — 1
By substitute ( = 1, we get the root :

r,Tre = —Wp
Above equation can be written as:

STy + To + 2Qwpro  ay a9

X(s) = =
(5) $2 4 2Cwys + w? stHw, (54 wy)?
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After using Partial Fraction Decomposition, we get:
a; = To

Ao = ii‘o —+ Towp,

Thus the solution of differential equation Z(t) + 2Cw,z(t) + w?z(t) = 0 where z(0) =
20, 2(0) = @ is :
z(t) = xoe "t + te ! (g + Town)

Where:
a; = Xo

Ao = on + ToWn

4.2.3 Under damped Case (( < 1)

We have the root : r,170 = —(w, + w,/* —1
By modify the square root part, we get :

1,72 = —Cwy £ wpy/—1(1 = ¢?)
= _Cwn :l:wn\/m\/__1
= —Cw, £ wp/ (1 — (?)i

Let:
0 = (Wwn,
Wqg = Wp (1 - CQ)

We can write the root as :
r,ry = —0 + Wyt

Rewrite the root in form of :
§* 4+ 2wps + w2 = (s + ) +w?
We get :

a = (wy

o= VT=
Above equation can be written as:

sxo + &g + 2CwnTo ST + Lo + 20wy

X(s) = =
(s) 52 + 2Cwps + w? (s 4+ a)? + w?

After using Partial Fraction Decomposition, The solution of differential equation &(t) +
2wpa(t) + w2x(t) = 0 where x(0) = zg, #(0) = g is :

x(t) = acos(wt) + bsin(wt)



4.2. DISCUSSION OF EACH CASES

Where:
a=xoe ™
:tO + $0Cwn _
b =2 TR, at
w
a = Qwy

w= =)k

Or in simple form of :
z(t) = Ae™“meos(wqt — @)

Where:

; 2
A _ \/x% X (l’o + ngwn)

(1—¢Hw?
wq = wny/ (1 =¢?)
¢ = atan2( Fo + ToCn

Wny/ (1- CZ)’xO)

25
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Chapter 5

Partial Fraction Decomposition

Usually we have a Function:

Where:
e A(s) is a polynomial which order is smaller than B(s)
e B(s) is a polynomial which order is greater than A(s)

To perform the Partial Fraction Decomposition, first we have to get F(s) into the ZPK
(Zero, Pole, Gain) format which is:

K(s+ 2z1)(s+ 22)(s + 23)...(s + 2n)
(s +p1)(s+p2)(s+p3)...(s + pn)

F(s) =

Where:
oz is roots of A(s) that is the zeros of F'(s)
* D is roots of B(s) that is the poles of F(s)

Given denominator of F(s), determine the pole of the polynomial (s+p;)...(s+p,). From
the result we can divide into 3 cases.

5.1 Case 1: Distinct Real Poles

A(s)

In this case we can propose that the F(s) = Bz can be written into:

a1 a2 Qp,
Sl + ...+
S+p1 S+po S+ Pn

27



28 CHAPTER 5. PARTIAL FRACTION DECOMPOSITION

Example
24 8s+15
Fls)= S X+ 10
s3 + 352 4+ 2s
We can see that Nominator order is greater than Denominator order. And the denomi-
nator s + 352+ 2s has the roots s; = 0,50 = —2,53 = —1 — p; = 0,py = 2,p3 = 1. Thus
we have:
s°+8s+15 s2 4+ 85+ 15 aq as as

F p—g p—t p—y
(s) $3+3s24+2s  (s+0)(s+2)(s+1) 3+0+s—|—2+3+1

So we have to find aq, as, ag to make it work. We can use 2 methods to do it.

Method 1 Multiplication

52 4+8s+15 ay ao as

s(s+2)(s+1) s  s+2 s+1
Multiply both side in terms of a; (s):

s+ 8s+ 15 a as as
)=s5—+s +5
(s+2)(s+1) s s+2  s+1

s +8s+ 15 n as n as
— = Q S S
(s+2)(s+1) " Ts+2 Ts+1

s(s

Substitute s =0

0+0+15

T 4 4040
o0+r2)0+1) ™

Cl1:?

Multiply both side in terms of ay (s + 2):

s2 4+ 85+ 15 a; a9 as
2 = 2)— 2 2
(s+ )(S(S+2)<S+1>) (s+ )S + (s + )S+2+(s+ )S+1

52 4+8s+15 ay
S e 2) = 2
611 (s + )S+a2+(s+ )

as
s+1

Substitute s = —2

(=2)*+8(=2)+15 @
EEr = ( 2+2)_2+ 2+ (—2+2)

4—-16+15
2

as
—2+1

:0+a2—|—0
3

a2:§

Multiply both side in terms of a3 (s + 1):

s2 4+ 85+ 15 ay Qo as
= 1)— 1 1
(s+2)(5+1)) (s + )3+(S+ )s+2+(8+ >s+1

52 +8s+15 ay ao
S Ay (R ™ 1
(s)(s+2) (s+ )s+(s+ )s+2

(s+1)(

+ as
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Substitute s = —1
(—=1)2 +8(=1)+ 15

45
1+1 1+1
Chciry © +)—1+( g s
1+ —-84+15
%:0+0+a3
(13:—8
So we get:
s>+ 8s+ 15 L 3 -8
F(s):—:l —2_ 4
s34+ 352 + 2s s s+2 s+1

Method 2 Coefficient

s> 4+8s+15 ! ao as

G+ s st2 s+l
Get the right-hand side denominator the same as left-hand side.

s?+8s+15  (s+1)(s+2)as + s(s+ 1)as + s(s + 2)as
(5+2)(s+1) B s(s+2)(s+1)
s°+8s+15 = 1)(s+2)a; + s(s+ 1)as + s(s + 2)as

(s +
= (s + 25+ s+2)ay + (s* + 8)az + (s> + 2s)as
(s”

s 4+ 35+ 2)ay + (s* + s)ay + (s> + 2s)as
2a1 4 3say + 2ay + s2as + sas + s2as + 2sas
s2 4+ 85 + 15 = s%(ay + ag + as) + s(3a; + ay + 2as3) + (2a,)
=a; + az + as
8 = 3a1 + as + 2as

15:2(1,1
15
CL1:?
L3
279
a3:—8
So we get:
F(s) s + 85+ 15 %Jr 3 L =8
S) —m—""7"""""""+ — — R S
$3 + 352 + 25 s s+2 s4+1

5.2 Case 2: Repeated Real Poles

A(s)

B can be written into:

In this case we can propose that the F(s) =

ay a9 Qp,

o = s T oxm T T Gy
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Example
Fls) = 82(:581; :
The denominator (s + 1)% has a repeated real pole at p = —1. F(s) can be written as:
S2+25—|—3_ ay ao as

F(s) =

GHLP s+l GF1Z 1P

Method 1 Coefficient
Determine aq, as, as

s°+254+3  (s+1)Pq (s + 1)ay L as
(s+1)*  (s+1)P(s+1) (s+1(s+1)* (s+1)°

s2+2s+3  (s+1)%a1+ (s+1)az + a3
(s+17% (s + 1)

s>+ 25+ 3= (s+1)%a; + (s + 1)ag + as

s? + 25 + 3 = s%a; + 2saqy + ay + sas + as + ag

$°+ 25+ 3 = s"a; + s(2a1 + az) + (a1 + az + a3)

1=a
2 =2a1 + a9
3=a;+as+as
—a =1
—ay =0
— a3 = 2
Thus we get:
F(S):82+28+3: 1 L+ 0 n 2 _ 1 n 2
(s+1)3 s+1 (s+1)2 (s+1)2 s+1 (s+1)°

Method 2 Derivative
From finding the common denominator above:

s +25+3=(s+1)%a+ (s+ 1)ag + a3
Substitute s = —1

(=12 4+2(=1) +3 = (=14 1)2a; + (=1 + 1)ag + as
(=1 +2(-1)+3=04+0+ay
as = 2

—_

Take derivative of s? 4+ 2s + 3 = (s + 1)%a; + (s + 1)ag + a3 both side, we get:
25 4+2=2(s+1)a; + ay
Substitute s = —1

2(-1)+2=2(-14+1)a; + ay
2(—1)+2=0+a2

CLQZO
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Take derivative of 2s + 2 = 2(s + 1)a; + ay both side, we get:

2:26L1
a1:1
Thus we get:
Fs) s*+2s+3 1 0 . 2 1 2
S) = et —
(s+1)3 s+1 (s+1)2 (s+1)3 s+1 (s+1)3

5.3 Case 3: Complex Conjugate Poles

Method

In this case we can propose that the F(s) = % can be written into:
A
F(s) = _Als)
(s 4+ a)? + w?
Where from general denominator:
s+ds+e=0
d
a==
2
Ve — d?
Ww=——
2
Example
s—1
F(s)= ———
(s) 52+ 25+ 2

From denominator s + 2s + 2 in general form d = 2, e = 2, we get:

a=1
w=1
Thus:
s—1 s—1

F(s) =

242512 (s+1)2+12




32 CHAPTER 5. PARTIAL FRACTION DECOMPOSITION

5.4 Improper Complex Function

Method

We have a transfer function:

Where:
e A(s) is a polynomial which order is greater than B(s)

e B(s) is a polynomial which order is smaller than A(s)

Equation division).

We can use synthetic division to make the A(s) smaller than B(s) (Polynomial




Chapter 6

Laplace and Inverse Laplace Transform

Laplace Transform convert a function in time domain into frequency domain in polyno-
mial form. Laplace Transform is used for Analyzing and Solving Ordinary Differential
Equation. By using Laplace Transform we can analyze an ODE by just analyze the
polynomial equation.

Process

Given an Ordinary Differential Equation and Initial Condition

n

Laplace Transform

bis+ b 1
X(s) = ! 15 + 0o 1
as8° + ais+ag s
i
Partial Fraction Decomposition
b k i
X(s)==+——+—2
S s+p1 S+
I}

Inverse Laplace Transform

Jf(t) = ko + kle_plt + ]{?26_th

6.1 Laplace Transform

Definition of Laplace Transform: Given a function in time domain, its Laplace Transform
is denoted by:

F(s) = L{f(H)} = / T f(tyedt

Where : s =0 + jw

33
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6.1.1 Laplace of Dirac Delta Function

We have a function :
o (t/a)?

asa — 0

6.1.2 Laplace of Unit Function

1, ift>0
u(t) = .
0, ift<O

We have a function :

We have a Laplace :

o 1 1 1 1
— 1—stdt:__—stoo:__ —00_0:__ — 1=z
U= [ e e = e - = [0 - 1] =
6.1.3 Laplace of f(t) = e
We have a function :
flt)y=e
We have a Laplace :
F(s) = / “temstt
0
:/ ef(era)tdt
0
1 [o¢]
_ - ¢ / —(s—l—a)tdt
— | e
1 —(s+a)t]>®
" s+ta [ o )t}o
1 —0o0
T +a [e Bl 60}
Fls) = —
S) =
s+a
6.1.4 Laplace of f(t) =t
We have a function :
flt)=t

We have a Laplace :

Let :
u=t—du=dt

1
dv = e 5tdt — v = /e_Stdt = e
s
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6.1.5 Laplace of Integral of a Function

We have an integral of a function:

0= [ 1o

We have a Laplace:

F(s) = /0 7 /0 (et

' 1 —st|oo <1 —8
= [ 1=+ [ e
1 OO —st

6.1.6 Laplace of Derivative of a Function

We have an integral of a function:

We have a Laplace:

_ [Tl
F(s)—/o Tl dt

=e ' f)|F + /000 f(t)se *dt
= —f(0) +s /OOO f(t)e*tdt

o0y e sy - o)

35
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6.1.7 Final Value Theorem

FVT is used to relate the steady state behavior of f(t) to the behavior sF(s). If a function
has a Laplace transform, then:

lim f(t) = lim sF(s)

t—>o00 s—>0

Example 1 We have a system

K
Qs) = —=
s(ts+1)
To find the steady state value of w(t), we get:
K

Wes = lim s——— =
s=>0 s(ts+1)

Example 2 We have a system

w(t) + aw(t) = bu(t)
sQ(s) + afd(s) = bU(s)
Q(s)(s +a) =bU(s)
b
Qs) = Gta) U(s)

Case 1 : We want to study when u(t) = V; is step function, thus U(s) = 2, we get a

system:

Vob
s(s+a)

Q(s) =

e Check if the poles of the system is on the left-half plane

By finding the roots of denominator of the system s€(s) = S(ss‘jgl;) = (ﬁi)' We see the
root is s = —a where a is positive, thus the pole of the system in on the left-half place.

Finding the steady state of the system:
Vob : Vob Vob

= ]_' Q pum— 1. = = -—
Wes = I () =50 85(3 + a) 50 (s+a) a

Case 2 : We want to study when u(t) = ¢ is ramp function, thus U(s) = %, we get a

system:
b

T )

e Check if the poles of the system is on the left-half plane

By finding the roots of denominator of the system s{(s) = s (sbJra) = S(Sia). We see the
root is s = —a and s = 0. The root s = 0 is exactly on the imaginary axis, thus the pole

of the system in not on the left-half place. Thus the system will not come to rest at the
final value.
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6.2 Inverse Laplace Transform

We want to inverse the Laplace Transform from frequency domain back to time domain.

y+iT
fO=LFE) = ¢ (s
y—iT
From the inverse Laplace Transform from definition, it is very hard. We want to ma-
nipulate the Laplace Transform into an easier and recognizable form to easily inverse
it.

6.2.1 Case 1: Distinct Real Poles

Example
248 15 7.5 —8 1.5

s34+ 352+ 25 S 5+1+5+2

75 . =8 15
s]+£ [3+1]+£ [3+2]

. -1 1 . -1 L -1 L
=T5L7 ] = 8L [ ]+ 15L7 [ ]

f(t) =751(t) — 8 ! + 1.5 *

LTF(s)] = L7

6.2.2 Case 2: Repeated Real Poles
Example
52 +25+3 1 L 2
(s+1)3 s+1 (s+1)3
2
(s + 1)3]

- e

t3*1€71t)

LF(s)] = L7 =]+ L7

]

- ATy

ft)=e M+t

6.2.3 Case 3: Complex Conjugate Poles

Example
s—1 B s—1
2425 +2  (s+1)2+12

]:£71[3—1+2—2]:£71[
s+1

CESVESEAE

) |
f(t) = e Feos(t) — 2etsin(t)

F(s) =

s—1
(s+1)2+12

s+1-—2

LTYUF(s)] = L7 Grig+12

]

= FESVESE

6.3 Poles Location and Time Domain Response
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2. Double p_olcig“,ww_‘ m..”n “l“w”;‘l‘-h““|“ M

g T

b 3
4

Stable

3.  Complex conjugate poles at s =~ ak jb

Jw e(t)
x 7b
- - Stable
x =

4. Complex conjugate poles at s = jb

jw ) e(t)

1 Jb g g S AR
o Marginally /.\ /\ M
ol ‘ stable \/ \-/ i

x b

5. Double complex conjugate pbles at s==jb

jw | o(t)

b ‘ ‘ ts:rl bt f\
i [/ -\h— i
Tl Unstable V/\ oy
b i imme "‘~~U

6. Poleat s=0 | il

g

Marginally i Lud
stable ‘

|

ay




6.3. POLES LOCATION AND TIME DOMAIN RESPONSE

P ERAVLELR Y

7. Double poles at s =0

dw
0 i Unstable
o
8 Poleats=aq
bjw
el Unstable
a o

9. Double poles at s = a

v

il Unstable
o

a

pelt)

jc(t)

10. Complex conjugate poles at s = a = 3b

§jw
jb x

e

. Unstable

(~3 5
Q

4

| «(t)

pe

)

39

€ sin bt

e
-
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Chapter 7

State Space Representation

Linear State Space Form
& = A(t)xr + Bu(t)

Non-Linear State Space Form
T = f(t,x,u)

7.1 Forming State Space
e Step 1 : Obtain Equation of Motion.
e Step 2 : Choose State Variables |ex: position, velocity ...|.

e Step 3 : Take Derivative of State Vector.

Step 4 : Write in State-Space form

Step 5 : Write Output Equation.

Example 1 Obtain S.S from system below
e Step 1 : Obtain Equation of Motion.
g+ 4y + 3y = 3u
e Step 2 : Choose State Variables. We would like to know y and y. Thus, Let Choose:
X1 =y
X2 == y
e Step 3 : Take Derivative of State Vector.
Xl = y => Xl = y
Xo=g=>X,=10=3u—4y — 3y
X
Xo

_ Y
3u — 4y — 3y

41
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e Step 4 : Write in State-Space form.
. [Xu 0 1] X, 0

L=l ARG

e Step 5 : Write Output Equation. We choose y = y,,. because we only interest in
displacement only X7, if we are interested in velocity X, as well we choose ¥ = yswo-

X, 1 0] [x,
Yone = [1 0} |:X2:| O~ Ytwo = |:0 1:| |:X2:|

Example 2 Obtain S.S from system of mass, spring, damper
dy

A Z Yy dt
F
k
———/V\V\————
c ky m
T1
| ~—]

Q Q y_

e Step 1 : Obtain Equation of Motion. From the 2nd law of Newton:

S F = mi

F—ky—cy=mj

my+cy+ky=F

.oc.k F

J+—y+—y=—

m m m

e Step 2 : Choose State Variables. We would like to know y and y. Thus, Let Choose:
X1 =Y
Xo =1

e Step 3 : Take Derivative of State Vector.
Xl = y => Xl = y

e Step 4 : Write in State-Space form.

. [xi] o 1] [x, 0
R EEE R HE
e Step 5 : Write Output Equation.
X,
=1 0
=0t 0[5
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ky

k1y1f +U1

VY |y

Y1 kayr mig

ko
kayo Us k3y2
A Y A

mo
* Y2 + mag

Example 3 Obtain S.S from system of mass, spring with 2 vertical mass

e Step 1 : Obtain Equation of Motion. From the 2nd law of Newton:

Zﬁ:mﬁ

Mass 1: — kyyy + koyr + uy + koyo = math
Mass 2: — k3ys — koo + us + ko1 = maijo

e Step 2 : Choose State Variables. We would like to know y and 3. Thus, Let Choose:

X1 =y
Xo =1
X3 =1yo
X1 =19

e Step 3 : Take Derivative of State Vector.

X1=y1=>X1=y'1

. - . k k 1 k ko — k 1 k
Xo=11 => Xo = §1 = — gy + —2q1 + —tuy + 2y = 2Ly + —up + 2y
my my my my 1 1 my
Xg =y => X3 =1
. - . k k 1 k —ks — k 1 k
Xi=g=> Xy =l = ——tfg — —tpp + —Up + ) = —— gy + —Uy + —y
oy oy oy Mo ) mao )
X A
XQ _ —kz,;fl Y1+ m%m + ,%?/2
X3 U2
—k3z—ko

1 ko
me Y2 + m2u2 + mzyl
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e Step 4 : Write in State-Space form.

X, 0 1 0 0] X, 0
X = Xz - k2n:1k . 0 r% 0] | X2 4 m% 0| {w
X3 O 0 O 1 X3 O 0 u2
I R 1o B
e Step 5 : Write Output Equation.
X1

X3
X4

{1 0 0 0} X,
y:

Example 4 Solve system of single mass and spring and force using Matlab.

MATLAB Numerical Method using ode45(Runge Kutta)

[t,x] = ode45(@f,tspan,x_0)
t = time

x = state vector

ode45 = solver

f = function

tspan = t_0 -> t_f

x_0 = initial condition

Example:

tspan = [0,10];
x_0 = [0,0];

function dx = model (t,x)

% dx = Ax+Bu
0.01;m=1;u=2;
[0 1;-k/m 0];
[0;1/m];

= A*xx + B*u;

k
A
B
dx

[t,x] = ode45(@model ,tspan,x_0);
plot(t,x(:;1))

hold on

plot (t,x(:;2))
legend(’displacement’,’velocity’)

Example 5 Obtain S.S from system of mass, spring, damper with 2 horizontal mass

Equation of Motion
Z F =ma
Mass 1: myp(t) + bip(t) + kip(t) = u(t) + k1q(t) + b14(t)
Mass 2: ma(t) + (k1 + k2)q(t) + (b1 + b2)q(t) = kip(t) + bip(t)

) = () + 1 alt) + 20 = 50 — ~p(0)
() = ity + Dopry - TR gy (BB

mao ma mao ma



7.2. STATE SPACE OF SCALAR DIFFERENTIAL EQUATION SYSTEM

k1y1f

ky

fu

R

Y1 ko
ko

kzyz

A

Y

mi1g

k3yo

y

Let:

T p Ty

v= |2 = | =>i= |

3 p T3

Ty q j34

Thus, we get state space form:

T 0 0 1 0

: T 0 0 0 1

T3 m — - -

T Ll _ (k1thk) b _ (b1+bo)

4 m2 mo mo mo

L1

y=[1

7.2 State Space of Scalar Differential Equation System

7.2.1 Casel

Consider equation below:

0 o0 o™

T3
Ly

p

q
p
q

T 0

T2 0

T3 + le u(t)
Ty O

y™ + a1y + L+ an1y’ + any = u < Input has not derivative

45
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Let: ~ _ ~ _
T Yy
Ty Y
Tp—1 ynil
T y"
Thus
KR y T T > '
To y" T3
j: pr— pr— pr—
i'nfl y" mn
Tn —Apx1 — A1T3... — ATy + U —Apx1 — A1 X3... — ATy + U
Arrange into SS form:
0 1 0 0 1 0
0 0 1 0 T 0
xr = . . + u
—ap  —Qp—1 —Op_2 —ai| |Tn 1
I
T2
y=[1 0 0] | .
T

We have a corresponding Transfer Function is

Y(s) 1
U(s) s"+as" 1+ ...+ an_15+ay,

7.2.2 Case 2

Consider equation below:
Y™+ ay ™Y + 4 a1y 4 any = Bou” + fiu "t + ...+ Bau < Input has derivative
Let:

1 =y — fou

Tg = ?/ _BOU/ — fiu :$/1 — Biu

Tn = yn_l - Boun_l e T Bn—lu = x;_l - ﬁn—lu
Where (g, 51, ..., Bn_1 are determined from:
Bo = bo

51 =b — alﬁo
Ba = by — a1 81 — azf



7.3. TRANSFER FUNCTION TO STATE SPACE

Arrange into SS form:

0 1 0 0 T B
0 0 1 0 To B
r= . +
—an —0p—1 ) —ag T Bn
T
T
Ty

We have a corresponding Transfer Function is

Y(s)  bos" 415"+ 4 by_15+ by
U(s) 8"+ as" L+ ...+ ap_15+ ay,

7.3 Transfer Function to State Space

Example

Y (s) 100

U(s)  s*+20s3+ 10s2 + 7s + 100

(s* + 205 + 10s* + 7s + 100)Y (s) = 100U (s)

Taking Inverse Laplace Transform
y@ 4+ 20y +10y" + 7y + 100y = 100u
Let:

T =y=>10 =Yy =,
I‘sz,:>g"/‘2:y”:x3
z3=y" => i3 =y® =14

zy=y" => iy =y = 100u — 20y — 10y" — 7y — 100y
State Space form:

1 0 0 T
0 1 0 T2
0 0 1 T3

-7 =10 =20| |x4 100

I
T2
T3
Ty

47
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7.4 State Space to Transfer Function

We have a Transfer Function:

Y(s)
=G
i = 6
with state space in form of:
& = Azr + Bu
y=Cz+ Du
Let have a Laplace transform of SS:
sX(s) —x(0) = AX(s) + BU(s)

Assuming z(0) = 0/C, we get:
sX(s) — AX

(sI —A)
(sI — A~ (sl — A)

Substitute into Y'(s)

(5) = C[(sI — A)"*BU(s)] + DU(s)
(s) = C(sI — A)"'BU(s) + DU(s)
Y(s) = [C(s] — A)'B+ D|U(s)

Y
Y

Thus the Transfer function can be found by:

G(s)=C(sI —A)'B+D

Example



7.4. STATE SPACE TO TRANSFER FUNCTION

(s2+55+25) (—s—5) 1
(s3+552+255—5) (s3+5s22+25s—5) (s3+552+255—5)
. _5 (s°+5s) —s
G(s)=[1 0 0 (51552 4255_5) (315521 2555) (s5-+552+255-5)
5s (25375) 52
(s345s2+255—5) (s345s2+255—5) (s34+5s2+255—5)
(—255—245)

(s3+5522+25sf5)
_ (2552 +2455)
G(s) = [1 0 O] (s34+5524255-5)
(—120s2+6255—125)
(s34+552+255—5)

(=255 — 245)
(5% + 55?2 4 255 — 5)

Thus
25s + 245

34524255+ 5

25
—120

49
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Chapter 8

Linear Approximation with Taylor
Series

What is a Linear System ? Linear System is a system that comply to 2 rules.
e Superposition (Addition).

e Homogeneous (Multiplication).

8.1 Superposition

Given that we have a function y = f(z).
e If we have a value x; substitute to the function we get y; : y1 = f(x1)
e If we have a value x5 substitute to the function we get y; : yo = f(x2).

e If we have a value x1 + x5 substitute to the function we should get y1 +vy> : y1+1y2 =
f(:cl -+ IQ)

8.2 Homogeneous

Given that we have a function y = f(z).
e If we have a value aury substitute to the function we get y; : y1 = f(aw)

e If we have a value x; substitute to the function then multiply by a we should get
y1 = af(z)

Example Find out if the function is linear : y =«

Superposition test y; = x1,y2 = x2 Add both result together y; + y2 = x1 + 22
Substitute x; + x5 to the function we get y; + yo. Thus, y; + y2 = y12. TEST PASS.

Homogeneous test Substitute ax we get y = ax. Substitute x and multiply by a we
get y = ax. Thus, ar = az. TEST PASS. Both test is passed and thus the system is

linear.

o1
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Example Find out if the function is linear : y = 22

Superposition test y; = 2%y, = x3. Add both result together y; + y» = 2?7 + 3.

Substitute x; + 5 to the function we get (z; + 22)%. Thus, y1 + y2! = y12. TEST FAIL.
The test is failed and thus the system is nonlinear.

8.3 Linearization Process

One of the Linearization method is by using Tyler Expansion Series within an operational
range for stability.

dy, (z — xg) d*y
dx o 1! *
Let take a look at the plot:

)2
(z = o) } + ...[HigherOrderTerm]

v~ o)+ | T

A

Y

Figure 8.1: Mass spring system

y = L(z) is the linear approximation of y = f(z) and a = x, is an equilibrium point.
We can see that we want to pick an operational range where the function is stable because
the y = L(z) is close to y = f(x). As we move a way from the operational range, the
approximation is starting to diverge from the real solution.

Example Linearize : y = 22. We have:

_ dy, (x — xp) d*y, (v — xp)? .
Yy~ y(xo) + {% TR + @LEOT + ...[HigherOrderTerm]

Only consider the first order term and eliminate HOT because in HOT the variable x is
subject to power number that will make it nonlinear. We get:

dy, (z — )
y =~ y(zo) + {%’xoT
We get:
dy d(a?)
Tle0 = =7 leo = 22lay = 220
We get:

o)

1!
y = y(wo) + [270(x — 20)]

y ~ y(zo) + [2%
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‘y ~ y(o) + 2wor — 27

Let pick an equilibrium point xq = 2
y=224+2x2x—2x2?
y=4+4x -8
y=4x —4

Now that we have a original function y = 2? and approximation function at zo = 2
y = 4x — 4. Let compare:

T =2
:>yori:22:4
g —Ax2—4—4

Both are equal to each other at equilibrium point.

r=3
_ __ 92 _
_>yori—3 —9
=>Yin =4x3—-4=28

A way from the equilibrium point, it starts to diverge.
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Chapter 9
DC Motor

DC motor is a mechatronic product that consist of two parts: the mechanical part and
the electrical part. A typical dc motor used by a robot is constructed by: a dc motor, a
wheel encoder (for measuring rotation pulse of motor ), and a gear box (for reducing the
speed of motor).

Encoder

Figure 9.1: Typical DC Motor

9.1 Modelling

Ra ia La

K.V.L

Figure 9.2: dc motor model

9.1.1 Electrical Part

Ub(t) = Kbe(t) = wa(t) (91)
Where:

95
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e uy(t) is voltage at terminal conductor of motor
e K, is back emf constant

e =wis angular velocity of motor

T, = Kyig(t) (9.2)
Where:
o T, is rotor torque
e K, is motor torque
° 1, is the current draw by motor

By applying Kirchoff Voltage Law to the circuit loop in Figure 9.2
o v,(t) is input voltage from power source
® Uesistance = Rala(t) is voltage across resistance

dig(t) - :
® Uinductor = Lig Z;E ) s voltage across inductor

dig(t
valt) = 0y(t) — Rada(t) — LoD _ g
dt
dig(t
= va(t) = p(t) + Ruia(t) + Lo — di ) (9.3)
Substitute Equation 9.1 into Equation 9.3, we get:
dig(t
Va(t) = Kyw(t) + Ryig(t) + Lald—i) (9.4)
In practical dc motor the L, is very small (L, ~ 0) and neglectable.
Va(t) = Kyw(t) + Raiq(t)
o(t) — Kpw(t
S (1) = e = Kuwo(?) (9.5)
R,
9.1.2 Mechanical Part
T, =T+ Ju(t) (9.6)

Where:
e Ty s torque of coulomb friction and viscous friction

o J is moment of inertia



9.1. MODELLING

We know that:

Ty = T,sign|w(t)] + Dw(t)

Where:
o T, is coulomb friction torque

o D is coeflicient viscous friction

Substitute Equation 9.7 to Equation 9.6, we get:

T, = T.sign[w(t)] + Dw(t) + Jw(t)

9.1.3 Approximation of coulomb friction to zero 7. =~ 0
T, = Dw(t) + Jo(t)
From Equation 9.2: T, = K;i,(t) substitute to Equation 9.8:

Kyia(t) = Dw(t) + Jo(t)

Duw(t) + Jis(t)

= |ig(t) =

Ky

9.1.4 Keep coulomb friction T,

_ T,sign|w(t)] + Dw(t) + J(t)

= |i4(t)

Ky

9.1.5 Electrical and Mechanical combine

9.1.6 Approximation of coulomb friction to zero 7, ~ (0

From Equation 9.5 and Equation 9.9: Put it side by side:

Get w(t):

Separate w(t) and vy(t):

o7

(9.7)

(9.9)

(9.10)
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Lumped Parameters without Friction

KyK; + DR, K,
) = — o (t 11
w(t) = —( R Jw(t) RaJv() (9.11)
Let:
o = (KDY, (1]
o b= % [rad/s*/V]
We get lumped Parameter in a simplified form as:
= w(t) = —aw(t) + bu,(t) (9.12)

9.1.7 Keep coulomb friction T,

Lumped Parameters with Friction

aft) = =P ) + 2L f) - Esignwl)  (913)
Let:
o o= (SR [1/g]
o b= f rad/s?/V]
=% ]

We get lumped Parameter in a simplified form as:

= w(t) = —aw(t) + buy(t) — csign(w(t)) (9.14)

9.2 Simulation

In general, the equation w(t) = —aw(t) + bv,(t) — csign(w(t) is used to represent all the
dc motor in the market. By modifying the parameters a, b, ¢ will result in different dc
motor. From equation w(t) = —aw(t) + bu,(t) — csign(w(t))

e w(t) is the angular acceleration of dc motor and is the output of the system
e w(t) is the angular velocity of dc motor and is the output of the system

e v,(t) is the input voltage to dc motor and is the input of the system
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va
B w 1 ®
w = —aw + by, - >
1%
6 =—ab + bva > E > ; — »

Figure 9.3: Simulation Flow

9.3 DC Motor 2nd Order Model (L, is not Neglected)

9.3.1 No Friction

From Equation 9.4 and Equation 9.9, we have:

va(t) = Kyw(t) + Raia(t) + La di;i”
in(t) = 2o+ o)

Ky

We get:

T, .. .
K, + LQE(Dw(t) + Jo(t)) (9.15)

Kva(t) = K Kyw(t) + Ra(Dw(t) + Jis(t)) + La(Di(t) + Jis(t))

(t)
K, (t) = KiKpw(t) + Ry Dw(t) + Ry Jw(t) + Lo Dw(t) + Lo Jo(t)
Kiv,(t) = (K Ky + Ry D)w(t) + (R 4+ Lo D)w(t) + Lo Jio(t)
L, Ji(t) = —(KKp + RyD)w(t) — (RyJ 4+ LoD)w(t) + Ky, (t)
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Lumped Parameters without Friction 2nd Order

v BaJ+ LD . KKy + R, D K
W(t) = Tw(t) Tw(t} + LaJ'Ua(t)
Let:
_RJ+LD, KK+RD _ K
- LJ 7 LT LJ

We get lumped Parameter in a simplified form as:
(9.16)

= W(t) = —aw(t) — bw(t) + cvy(t)

9.3.2 With Friction

From Equation 9.4 and Equation 9.10, we have:
dig(t
Va(t) = Kyw(t) + Ryig(t) + L, Zdi )
, Tesign[w(t)] + Dw(t) + Jw(t)
?’a(t) = K
t

Ky

1
—(Dw(t) + Ji(t)) < derivative of sign function is 0
t

dig(t) _d (Tcsz'gn[w(t)] + Dw(t) + Jw(t))
t

We get:

Tesign|w(t)] + Dw(t) + Jw(t) Ll 1

valt) = Ky(t) + Re 5 o (D) + Jo(0)  (9.17)

K, (t) = KiKpw(t) + R Tesign|w(t)] + RoDw(t) + RaJw(t)) + Lo Dw(t) + Lo Jo(t)

Lumped Parameters with Friction 2nd Order

win  RaJ+ LD KKy, + R,D K R, T, .
(.U(t) - LaJ CL)( ) LaJ W(t) + Lajva(t) LaJ Slgn[W(t)]
Let:
. R,J+ L,D - KKy + R, D . Ky J— R,T.
~ LJ L. J ' LJ  L,J
We get lumped Parameter in a simplified form as:
= W(t) = —aw(t) — bw(t) + cv,(t) — dsign(w(t)) (9.18)




Chapter 10

DC Motor Lamped Parameters
Identification

DC Motor is widely used in many applications such as robot, industrial application -etc.
It has been produced in great number, some is at high standard with larger documentation
and specification while some are inexpensive with little to none of documentation. To be
able to use the dc motor efficiently, we must know it mathematical model. In this lesson,
we use a variant of a famous algorithm known as Extended Kalman Filter (EKF) and
Unscented Kalman Filter (UKF) to estimate the dc motor model.

10.1 DC Motor Stochastic State Space Model

From Lecture 1 : DC Motor, We have a mathematical model to represent the motor:
Model with neglect the coulomb friction:

w(t) = —aw(t) + bu,(t)

Model with the coulomb friction:

wW(t) = —aw(t) + bu,(t) — csign(w(t))

10.1.1 Model with neglect the coulomb friction

From the model:
w(t) = —aw(t) + bu,(t) (10.1)

In control system, we have a state space model for a nonlinear model:
&(t) = f(t,x(t), u(t)) + Vnoise(t)

y(t) = h(t, (1), u(t)) + Wnoise(t)

e i(t) is rate of change of state
e (t) is the current state

e u(t) is the input to the system

61
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e y(t) 1is the measurement model
® Unuise(t) is random process noise
® Wy,ise(t) is random measurement noise

From Equation 10.1, Let:

1 = W
To=a (10.2)
T3 =

We get:

T =W = —aw(t) + bu,(t) = —xox1 + x304()
2y =0 (10.3)

fgzo

In continuous nonlinear stochastic system matrix form

5151 — X2 + l‘gva(t)
l’(t) = |72 <t> = 0 + chnoz’se(t)
i 0
’ (10.4)
T
y(t) =[1 0 0] |z (t) + VRwnoise(t)
T3
Discretize the continuous model from Equation 10.4:
—Tox1 + T30,(t)
;13({;) = 0 + chnoise(t)
0
(10.5)
T
y(t) =1 0 0] |@2| (t) + vV Rwnoise(t)
x3
_ —To%1 + T30, (t)
M = 0 + chnoise<t)
T 0
(10.6)
T1
ye=[1 0 0] |@2| + VERwpise(t)
T3

k
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Discretized nonlinear stochastic system in matrix form

63

—ToX1 + T3V k

Thy1 = Tk + Ts 0 + V Tstvnoise,k
0
(10.7)
T
Yk = [1 0 O} T + \/}_%wnoise,k
T3 k

10.1.2 Model the coulomb friction

From the model:

W(t) = —aw(t) + bu,(t) — csign(w(t))

(10.8)
From Equation 10.8, Let:
T = Ww
e (10.9)
T3 = b
Tg = C
We get:
T1=w = —aw(t) + bv,(t) = —z2x1 + x30,(t) — x4sign(z1)
0
"2 (10.10)
T3 = 0
1:4 = O

In continuous nonlinear stochastic system matrix form

1 —To%1 + T30, (t) — wasign(zy)

i) = |22 () = 8 + V/Qenoiset)
= ! (10.11)
y@®)=[1 0 0 0] Z () + vV Rwnoise(t)

T4
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Discretized nonlinear stochastic system in matrix form

— X9 + T3Vq i — T4Sign(Ty)

0 Vo
Tyl = T e Ts 0 + TSdenoise,k
0
(10.12)
T1
ye=1[1 0 0 0] || +vVBwnoiser
T3
Ty

10.2 Identification using Extended Kalman Filter(EKF)

DC Motor Parameters Identification with EKF

Initialize Select any

® Igo initial state estimate

e Py positive definite error covariance matrix

Time Update

fi'lc+1|k = fd(f%kuc, Uk)

- . (10.13)
Poyijp = APy Ay, +Q

Measurement Update

Ukt1)k = Pa(Trgipk, Ukt1)
sz,k+1|k = Pk+1|kcg+1
Pkt = Cra1 PerinCiy + R (10.14)
Trg1jkt1 = Theye + Pzz,k+1\kpz_z,1k+1|k(yk+l — Uk+ilk)

_ —1 T
Pretlk+1 = Prie — Pozir1e P, pipr1 Pz it

10.2.1 Model with neglect the coulomb friction
From Equation 10.7, We have:

—ToX1 + T3V k

Tyl = Tk + Ts 0 + V Tstvnoise,k
0
T1
Yk = [1 0 0} T + \/ﬁwnoise,k
T3

k
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Applying Extended Kalman Filter

Initialize state and positive definite error covariance matrix

2
Zopp = [13| or some number randomly

25

Pop =2 xeye(3) = or some number randomly

S O N
[evll \V N aw]
N O O

Time Update

e T, =0.01 sampling time (s) , up to user

10 0 0
e () =10.00001 [ 0 25 0| =0.00001 x diag([10 25 25])
0 0 25
process covariance matrix, smaller is truth in process model (use for tuning)
1 00
e R=002|0 1 0| =0.02xdiag([]1 1 1))
0 01

measurement covariance matrix, smaller is truth in measurement (use for tuning)

Compute
—X2T1 + T3V k
j/c—|—1|k = jjk + T 0 + V Tstvnoise,k
0

VT5QdVnoise.r PUt this bunch if we use in simulation to simulate noise to a true system,
don’t put if taking real value from system because the system has noise already.

Compute
Py = AkPk\kA;;F +@Q

where:
—T2 —T1 Vg

A,=1 0 0 O
0 0 0

is the jacobian matrix calculated by derivative the state model. From Equation 10.4

dhvdfh dfi —Tow1+T3v,  —ToT1+TIVe  —T221+T3Ve
dzq dzo dxs dz1 dxo drs
Timy) = | @ @] | 3 i i
A Y) = dr1 dxo dzs | dx1 dza dzs
dfs  dfs  dfs 0 0 0
dr1 dxe dzs dxy dxo dzrs

Measurement Update
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Compute Jii1x = ha(Zpt1)k; Ur+1) Mmeasurement estimation. This equation is the es-
timation of a measurement would look like. In our case, we measure the w directly
(Equation 10.4) and thus we can take:

Uk = 1 0 O]Zpqapk + Dilap

Where: D, =0

Compute

T
Pp.kiie = Pop1pCrpr

T
P rrik = Crr1 PrapCipq + R

From Equation 10.4, we have C =[1 0 0]

Compute
o o 1 ~
Thsrh+r = Tertle + Pozor1ol g1 Yot — Get1ie)

Where yjy1 is the measurement from sensor which has noise mixed inside. Get data
directly from the sensor.

Compute

o —1 T
Pitipert = Povije — Poz k1o P g Pz 1k

10.2.2 Model with coulomb friction
From Equation 10.12, We have:

—Zoy + T3Uqp — T4Sign(xy)

0
Tp+1 = Tg + Ts 0 + V Tstvnoise,k
0
x
ye=[1 0 0 0] || + VRwnpiser
€3
Xyq

k

Applying Extended Kalman Filter

Initialize state and positive definite error covariance matrix

2

;g or some number randomly
1

Tojo =

Poo =2 *eye(4) = or some number randomly

S O O
S OO
o NN OO
N O OO
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Time Update

e T, =0.01 sampling time (s) , up to user

10 0 0 0
0 25 0 0 .

« Q=0.00001 |, ) o o] = 000001 x diag([10 25 25 1))
0 0 0 1

process covariance matrix, smaller is truth in process model (use for tuning)

1 000
0100 .
o R=0.02 001 0l= 0.02 x diag([1 1 1 1])
0001
measurement covariance matrix, smaller is truth in measurement (use for tuning)
Compute
—To%1 + T3Uap — Tasign(xy)
. . 0
Tp+1|k = Tk + T 0 +1v TSdenoise,k
0
Compute
Pep = AL Pup AL 4+ Q
where:
—Ty —I1 U, —sign(xy)
0 0 0 0
A=19 0 o0 0
0 0 0 0

is the jacobian matrix calculated by derivative the state model from Equation 10.11.

Measurement Update

Compute
Qk+l|k = [1 O 0 O]Zﬁk+1‘k + Dkumk

Where: D, =0
Compute

T
Prkvie = Pep1pCrgr
T
P i1k = Cop1 Poy1nCrpg + R

From Equation 10.11, we have C' =[1 0 0 0]
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Compute
o A 1 N
Thrh+1 = Tetle + Pozor1o P g1 Yot — Get1ie)

Where g1 is the measurement from sensor which has noise mixed inside. Get data
directly from the sensor.

Compute

o —1 T
Pk+1\k+1 - Pk+1|k - Pa:z,kJrl\k Zzyklk_’,_lPa;z’k;—Fllk

function x_est = EKF(uk,y_true)

Ts=0.01;

persistent x_est_p P Qd_est R_est Qc_est;
if isempty(x_est_p)

x_est_p = [2;13;25;1];

2%x[1 0 0 O;
0 0;

0;
gl %h2xeye (4) ;

o O o v
O O~

1
0

Qc_est = 1e-5%x[10 0 O O;

0 25 0 0;
0 0 25 0;
0O 0 0 1;] %le-5*diag ([10,25,25,1]);

Qd_est=Qc_est*Ts;

R_est=0.02;
end

c=[1 0 0 0]; D=0; Ck=c; Dk=D;

%Comput Kalman Gain and update predicted value
Wk=P*Ck >/ (Ck*P*Ck >+R_est) ;

y_est=Ck*x_est_p+Dk*uk;
x=x_est_p+Wk.*(y_true-y_est);

%Compute prediction at next time step
x_est=x+Ts*[-x(2) *x (1) +uk*x(3) -x(4) *sign(x(1));

0 3
0 8
0 1;

%#Update error covariance matrices
P=P-Wk*Ck*P;

%Define Ak

Ak=eye (4) +Tsx[-x(2) -x(1) uk -sign(x(1));
0 0O O 0 5

0 0O O 0 3

0 0 O 0 1; % jacobian

P=Ak*PxAk’+Qd_est;

Xx_est_p=x_est;
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DC Motor Control

In application of DC Motor, we want to be able to control its position and angular
velocity.

11.1  Velocity Control using PI Control

In this section we design a controller for decmotor based on linearized dcmotor model using

2nd Order Differential Equation Design Workflow. From DC motor Model, we have:
w(t) = —aw(t) + bu,(t) (11.1)

We have to design a velocity controller, thus the feedback of the system is angular velocity
of the dc motor.
We have our PI control:

va(t) = Kp(wa(t) — w(t)) + Ki/o (wa(t) —w(t)) dt (11.2)

From Equation 11.1,we get:

1
va(t) = Za(t) + %wd(t) (11.3)
From Equation 11.2 and Equation 11.3, we have our controller design:
1. a t
va(t) = Ewd(t) + gwd(t) + Kp(wa(t) —w(t)) + Ki/ (wa(t) —w(t))dt (11.4)
0

Substitute Equation 11.4 back to model in Equation 11.1, we get:

w(t) = —aw(t) + b (%wd(t) + %wd(t) + Kp(wa(t) —w(t)) + KZ-/O (wa(t) —w(t)) dt)
(11.5)

0=—w(t) — aw(t) + Wa(t) + awy(t) + bK,(wa(t) — w(t)) + bKZ-/O (wqa(t) —w(t)) dt

0 = (wa(t) —w(t) + a(wa(t) — w(t)) + bKp(wa(t) — w(t)) + bE; /0 (wa(t) — w(t)) dt

0 = (@alt) — (1)) + (a + bK,) (wa(t) — w(t)) + bK, /O t(wd(t) — w(t)) dt

t
0=¢é,+ (a+bK))e, + bKZ-/ e, dt
0

0=¢é,+ (a+bK,)é, + bK;e, < take derivative to cancel integral.
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wq [ad()
28y a
|1 b dt Ewd
Lb/ o Nonlinear part
w e 14 -
¢ Ol kpey + kif eydt e < | o[
w=—aw + by, —@ 5
w
measured
Figure 11.1: Velocity Control PI Controller
Thus, we get:

€y + (a+bKp)é, + bKe, =0 (11.6)

From 2nd Order differential equation standard form, we have:
X 4 20w, X +w2X =0 (11.7)

From Equation 11.6 and Equation 11.7, we get:

a+bK, = 2Cw,
2Cw, —a
K="
2
w
Ki - —_n
b

From equation above, we want K}, > 0. Thus, 2Cw,, > a, then (w, > 3 to ensure stability.

Velocity Control using PI Linear

Control input

0n(t) = Glt) + Flt) + Kofosalt) = (t) + K | (wlt) = wlt)

Control Tuning Constant

2Cw, —a
p:T

11.2 Velocity Control using PID Control

In this section we design a controller for dcmotor based on linearized dcmotor model using
2nd Order Differential Equation Design Workflow. From DC motor Model, We have our
PID control:

%@zmmm—wm+mlww%wmﬂ+m%ww—mm (11.8)
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From Equation 11.3 and Equation 11.8, we have our controller design:

1 d
va(t) = Ewd(t) + %wd( )+ K (wa(t) ) + K; / wql(t dt—l—Kdd (wa(t) —w(t))
(11.9)
Substitute Equation 11.9 back to model in Equation 11.1, we get:

1 ¢ d
w=—aw+b <5wd + %wd + Kp(wd — w) + Kz/ (wd — w) dt + Kd%(wd — w)) (1110)
0

1 ! d
0:—w—aw+b(5wd+%wd+Kp(wd—w)+Ki/ (wd—w)dt—i-Kd%(wd—w))
0

t
d
0=—w—aw + wg + awy + bK,(wg — w) + bKi/ (wg —w)dt + bKy— (wg — w)
0

dt

0= (Wg—w)+ (a+bK,)(wg —w) + K; /Ot(wd —w)dt + bKd%(wd —w)
0= (14 bK)(@a — &) + (@ + K, (wa — ) + bE; /t@d W)t

t
0= (14+0b0K4)é,+ (a+bKp)e, + bKi/ e, dt
0

0= (14+0b0Ky)é, + (a+bK,)é, + bKe,
Thus, we get:

(1+bKy)é, + (a+bK,)é, +bKe, =0

(a+bE,). K, (11.11)
TR, T iRy

From 2nd Order differential equation standard form Equation 11.7, we have:

(a+ bK),)

T 9w,
Aok, 2

bE:
(1+0Kg) "

Velocity Control using PID Linear

Control input

valt) = Kp(wa(t) — w(t) + K / (walt) — o(t)) dit + K o (alt) — w(t)

Control Tuning Constant We have more freedom to choose Kp Ki Kd, that

satisfied :
(a+ bK),)
— 2 I
Aok, 2
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11.3 Position Control using PID Control

In this section we design a controller for decmotor based on linearized dcmotor model
using 2nd/3rd Order Differential Equation Design Workflow. From DC motor Model,
We have our PID control:

valt) = K, (8a(t) — (1) + K, / (Bult) — 000)) dit + Kilh (00— 0(0)  (11.12)

From Equation 11.1, it can be written in form of position as:

0(t) = —ab(t) + bug(t) (11.13)
Thus, we get:
Va(t) = %éd(t) + %éd(t) (11.14)

From Equation 11.13 and Equation 11.14, we have our controller design:

valt) = $0a(0) + F0a(1) + Koy fBult) — (1)) + K, / (0a(t) — 000)) di + K - (0ult) — 011)

(11.15)
Substitute Equation 11.15 to Equation 11.13, we get:
. . 1. a - t d
0=—af+b Eed + 39d + K, (0, —0) + Ki/ (0q — 0)dt + KdE(Qd —0) (11.16)
0
.. . . t d
0 =—ab+ 04+ aby+ DK, (0, — 0) + bKi/ (0q — 0)dt + bKdE(Qd —0)
0

t
0=—0—af + by + afy + bK, (0, — 0) + bKi/ (64— 0) dt + bKd%(Gd —0)
0

t
0= (G — ) + a6 — 6) + b, (64 — ) + bKZ-/ (0a — 0) dt + b6y — )
0

0= (0g—0) + (a+bKz) (04— 0) + bK, (0, — 0) + DK, /t(ed — 0) dt

t
0=¢p+ (a + bKd)ég + preg + bKl/ e dt
0

0= 69 + ((l + bKd)eg + prég + bKieg
Thus, we get:
€+ ((I + bKd)ég + prég +bKieg =0 (11.17)

is the 3rd order differential equation with the characteristic form of:
N+ (a+ bK )N + bK,\ + bK; = 0 (11.18)

From Equation 11.18, we know that in 3rd order differential equation characteristic poly-
nomial, there exist 3 roots and at least 1 root is real root (denoted by A;).Thus, we can
write:
A+ M)A+ 2¢wp A +w?) =0
N2 4 20w A 4+ W2\ + M AT 4+ 20w AN+ w2 =0 (11.19)
N+ (2€wn + M)A+ (20wt + WA+ wWEA =0
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From Equation 11.18 and Equation 11.19, we have:

a+bKy=2(w, + M\
VK, = 20wp A1 + w2

bKZ = w,i/\l
K, = 2an+b)\1—a
2Cwp A + w2
P b
w2)\1
K, ="
b

Velocity Control using PID Linear

Control input

va(t) = Kp(0a(t) — 0(t)) + Ki/o (Ba(t) —6(t)) dt + Kd%(ed(t) —0(t))

Control Tuning Constant

K, — 2wy, —|—b)\1 —a
2Cwp A + w2
PT Ty
Ki _ wi)\l
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Chapter 12
DC Motor Cascade Control

12.1 Outer P Velocity and Inner PI Torque Control
Design

In this section, we design a cascade controller for decmotor with Outer Propositional
Velocity and Inner Propositional Integral Torque Control Design.

comp

Wd Cw P Td €r PJ U

1 T 1 w
Kt Js+D

K

o=

Assumption L =0, K, = K;,Tc # 0 From the Architecture, We have:
o u=Kpe, +K; f e-dt + comp

e, =Wy —W=>€6, =Wy — W
e . =Ty—T=>€ =T3—T

o Ty — Kpoew => 174 = Kpoéw

From the Model of DC Model, We have:

u=Kw-+ Ri

S u— Kuw

= P =
R

We have:
T=Ku=Tc+ Dw+ Jw
By Substitute ¢ in, We get:
u— Kjw

KtT:TC-FDw-i-JCU

RT.+ RDw + RJi = K,(u — Kw)
RJ. RD+K} R,
K, K, K,

= U
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Substitute u in, We get:

RJ. RD+K? | R
K, K, K,

= Kpe, + Ki; / e-dt + comp

Take Derivative to eliminate integral:

RJ. RD+K?,

A W+ K w = Kyé; + Kyer + coinp

RJ RD + K}

—w+ #w = K,i(tqa — 7) + Kii(14 — T) + comp
Ky Ky

From the model, We have:

7=T.+ Dw+ Jio =>7 = Dis+ Ji

We get:

%(D + R’%—iww = Kpi(Kpoby — (Dw + J0)) + Kii(Kpoew — (Te + Dw + Jw)) + comp

R?‘t]a; + R’%tl{t?w = Kpi(Kpoby — Do — J&) + Kii( Kpoew, — T, — Dw — Jw) + comp

%dz + R'%t[(fw = K,iKpobw — KpiDw — Ky JoO + K Kpoe,, — KT, — KjyDw — Ky Jw + coimp
%C& + —RD}; sz + KpDw+ Ky Jo + Ky Dw + KyJw = KpiKpoé, + Ky Kpee,, — KT, + comp
(Z;;—{ + KpilJ)o + (R,%—i[(f + KD+ Ky J)w + KijDw = Kpi Koy + Kii Kpoe, — KT + coinp
Multiply both side by -1 to reverse the sign:

—(%+Kpij)c'&—(R,%—iKE+KpiD+KiiJ)w—Kiti = — K Kpolw—Kii Kpoe,+ K T, —coimp

Adding both of the equation for compensation with :

+ (E + KpiJ)CJd
RD + K? )
+( L —|—KmD—|—K“J)wd
K

+ K Dwq
We get:
On LHS:

RJ . RD + K} .
(7 + Km-J)(wd — w) + (Tt + szD —+ K”J)(wd — CU) + KiiD(wd — CL)) =
t t
On RHS:
RJ RD + K?

= —KpZKpoew—Klleoew—i—Klch—comp%—(—+Kle)wd+(#—l—KplD—i—KuJ)wd—i—K”Dwd

K, K,
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Then:
On LHS:
(% + Kpid )éy + (R’%JZKE + KD + Ky J)é, + KiiDe, + KpiKpofo + Kii Kpot =

On RHS:

= Kyl — comp + (% + KpiJ)a + (%";Kf + KpiD + KyiJ)wq + KiiDwqg
On LHS:

(J;)(_;] + KpiJ)é, + (R’%—iKE + KD+ Ky + K, Kpo)éy + (KD + Ky Ko )e, =

On RHS:

= KT, — comp + (% + KpiJ)ia + (%—i[ﬁ + KpiD 4 Ky J)wq + KiiDwqg

On the LHS, Using the 2nd Order Differential Standard Form : X + 2¢w, X + w2X =0,
We get:
RD+K?
2w — (ot + KD + Kl + KpiKpo)
! (% + Kpi‘])
o (KuD + Ky Kp,)

w, =
(% + KpiJ)

We solve above equation for K,; and Kj; in terms of K, (,w,, We get:

oo _ D*R+ J’Rw} + kyo(K? = 2JRwyC) + D(K? + R(kpo — 2Jwi())
e Ky(D? 4+ k2, + J2w2 — 2Jkpown + 2D (kpo — Jwi())
J(=K? + kyoR)w?
Ky(D? + k2, 4+ J2w2 — 2JkyownC + 2D(kpo — Jwn())

Ki' —

On the RHS, We have our compensation:

D+ K2
coinp = KT, + (y + KpiJ)ioq + (%
t

t

RJ . RD + K}
comp = / |:KiiTc + (7 + KpiJ)da + (Tt
t

t
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Chapter 13

Kalman Filter

Kalman Filter was found by Dr. Rudolf Emil Kélman. This algorithm is a powerful
filtering algorithm that has been used in many applications most notably in signal pro-
cessing, control, optimization, sensor fusion, system identification -etc , and it is able to
be implemented online.

13.1 Kalman Filter (Linear System)

Consider a linear discrete time system as following:

T = Az, + Bui +v
k+1 k k+ Vg (13.1)
Yry1 = Cxpyr + Dupy1 + Wiy

Where:

o 1} € R™ state system

o Uy € R™ input system

° U € R™ measurement system

o A € R"*"= gystem matrix

o € R"=*"= observation matrix

e BB € R™*™ gome matrix

e D € R™ ™ gome matrix

® U € R™ independent process noises

e w, € R"™ independent measurement noises
o () € R"»*"= (Gaussian covariance matrix of v

o R € R™=*"= Gaussian covariance matrix of w
Apply Kalman Filter on the system
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Initialize Select any

® Tolo

[ J P0|0

initial state estimate

positive definite error covariance matrix

Time Update

Trrap = AZpp + Buy,
Peiar = AP AT + Q

Measurement Update

Uk1k = Clpqp + Dugsy
Pmy,k+l|k = Pk-l—l\kCT
Pyt = CPanCT + R
Trp1kr1 = Trrae + ny,k+1|kpyjk+1|k(yk = Ukt1jk)

o —1 T
Prerikr1 = Prvipe = Poy k1o Py pips1 Doy i

In terms of Kalman Gain,

13.2 Extended Kalman Filter (Nonlinear System)

_ -1
Kiy1 = P:cy,kH\kuy,kﬂ\k

Trghr1 = Tepre + Kipr (Unrr — CFpqape — Dugyr)

T
Peiipr1 = Pogape — Ker1 Py i1 K4

Consider a nonlinear discrete time system as following:

Where:

® Ty

Trr1 = fa(xr + ug) + v

Ykt1 = Pa(Tpp1, Upg1) + Wetr

€ R"* state system at discrete time
€ R™ input system

€ R™ measurement

some known function

some known function

€ R™ independent process noises

€ R™ independent measurement noises

Apply Extended Kalman Filter on the system

(13.2)

(13.3)

(13.4)

(13.5)
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Initialize Select any
® Ig initial state estimate

e Py positive definite error covariance matrix

Time Update

Tpyrpk = fa(Trp, ur)

B ; (13.6)
P = APy Ay, + Q

Measurement Update

?)k+1\k = hd(i"kﬂ\k, Uk+1)
P:Ey,kJrl\k = Pk+1|k01?+1
Pyy,kJrl\k = Ck+1Pk+1|kCg+1 + R (137)
Bratpirr = Terafe + Pryratn P 1 Uns — Grsan)

_ -1 T
Pk+1|k+1 - Pk+l|k - Pﬁlfy,k+1|kfpyy7k|k+1ngy7k+1|k
In terms of Kalman Gain,
_ ~1
Kk+1 - sz’k"‘l‘kpyy,k—l—l\k

Tps1je1 = Thorjpe + K1 [Yrr1 — Pa(Trgajr, Urs1)] (13.8)

_ T
Peitjpr1r = Py — K1 Py e K g

Where from linearization of nonlinear function f; and hg using a Taylor series expansion,
We get Jacobian matrix:

dfa
Ohyg
Cit1 = %‘xzf,ﬁl‘k

13.3 Unscented Kalman Filter (Nonlinear System)

Consider a nonlinear discrete time system as following:

Tpp1 = fa(ze +ug) + v

(13.9)
Yk+1 = ha(Zp41, Ukt1) + Wepa

Apply Unscented Kalman Filter on the system

Initialize
® g initial state estimate

e Py positive definite error covariance matrix
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Time Update

Xk|k = [‘f:lﬂk jk\k] + v/ ng + )\[O \/Pk|k — \/Pk|k]

X1k = Ja(Xjr, ug)
jfk+1|k = Xk-i—l\kwm
Pejg = Xk+1\kWXg+1\k +@Q

Measurement Update

X,gjllk = [Erpape - Erpap] F Ve A0 VPerr = /Perae)

Yie = hd(X,ﬁi)”k,ukH)

Z?k+1|k = Yk+1\kwm
Py kyijp = Xli?l\kWYkaHk
Pyykije = Yk+1\kWYk7ji-l|k + R

_ -1
Kk+1 - ny,k+1|k:Pyy7k+1|k

Thr1jerr = Thrae + K1 (Ur1 — Urraje)

_ T
P11 = Pogaje — K1 Pyy 116K

(13.10)

(13.11)



Chapter 14

Sensor Fusion

For filtering out noise of sensor and predicting the future change of state when there is
an absence of sensor data, we use method of sensor fusion. There numerous way of doing
a sensor fusion. Below are some of the application for sensor fusion.

14.1 Differential Drive Robot Sensor Fusion for Linear
and Angular Velocity

In differential drive robot, we have a position model:

T V cosf
Y = | Vsind (14.1)
global w
Where:
r
° |y is rate of change of position of the robot inside a global frame reference
0 global

o 0 is the heading angle of the robot inside a global frame

oV is the linear velocity of the robot inside a local robot frame

o w is the angular velocity of the robot inside a local robot frame

Our purpose is to estimate the V and w

Those two variable can be calculated from two sources: Wheel Encoder and IMU.

14.1.1 From Wheel Encoder

From differential drive robot kinematic model, We have:

V(t) = érg + ézg (14.2)
w(t) = d»% —~ q'bz% (14.3)

Where:
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o &, is the rotation velocity of the right wheel
o & is the rotation velocity of the left wheel
o is the wheel radius
o L is the robot based length
Wheel rotation velocity is calculated from the wheel encoder by:

L Pk — Pk
Cb—T

2 X w X encoder ticks

¢

~ GearBox x Pulse per Revolution

14.1.2 From IMU Sensor

We have:
V= Aimu—z + b
W = Wimy + b
Where:
® Uimu—= is the imu accelerometer in x-axis local frame
® Wimu—z is the imu gyroscope in z-axis local frame
o b is the biased of imu measurement

14.1.3 Estimate V

From model:

V= Aimu—z + b
b=0
Let:

I1:V—>.I:1:aimu_$+b
.TQZb—)l;Q:O

Discretized the model:

T1k+1 = L1k + aimu—w,kTs + st

T2 k+1 = T2k

i1 = Tk + ULy + x94T

T2 k+1 = T2k

SENSOR FUSION

(14.4)

(14.5)

(14.8)
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In state space form, we have a model:

Al B (6] 149
i) k1 0 1 i) i 0
Or:
oo B[]
== + aimufz,k (1410)
{b 1 0 1 b X 0
We have a output model:
T Vv
= |1 0 =1 0 14.11
=l afp] -o i) a4
Check observability:
hs — C
D= lcA
We have:
1 T,
A= [o 1]andC’: 1 0]
1 0].
— obs = L T} is full rank = observable.
Apply Kalman Filter on the system
Initialize:
. [0
® Too = O}
1 0
[ ] P0|0 - _O 1:|
1 T,
4= 0 1}
[ J B = -€8:|
eC =[1 0
« 0 ~10.00001 0
N 0 0.00001
0.00001 0
*f= { 0 0.00001]
® U = Qimu—z,k
® Yi = ‘/;ncoder,k
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Time Update
T = A2y, + Buy,
Py = AP AT +Q
Measurement Update
U1k = CTrqk
Py ik = PeypCh
Pyyiiik = CPpCT + R
Try1fk+1 = Treap + Pmy,k+1|kpy;:k+1|k<yk — Ukt1jk)

. -1 T
Pk+1|k+1 = Pk+1\k - Pmy,k+1\kuy,k\k+1ny,k+llk

14.1.4 Estimate w

From model:

Wk+1 = Wimu—2z + bk (14 12)
b1 = by, .

Let:

T =w—>21=0
J]QZb—)l:Q:O

Discretized the model:

T1,k+1 = Wimu—=z + bk

To k41 = by

T1kr1 = U + Tog

X2 k+1 = L2k

In state space form, we have a model:

LB B e
i) k1 0 1 i) i 0

w 0 1] M H

{b} k41 {O 1 {e], 10

yr=1[1 0] B;L =[1 0 mk (14.15)

We have a output model:

Check observability:
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We have:
A= 0 1 and C' = [1 O}
=9 ) =
1 0.
— obs = [0 1] is full rank = observable.
Apply Kalman Filter on the system
Initialize:
. [0

® ZL’0|Q = O:|

o o]
* oo =1g

0 1
4 = 0 1
o BB = _(1)
eC =[1 0
O = [0.00001 0

- 0 0.00001 |

[0.00001 0
L 0.00001
® U = Wimu—z
® Yk = Wencoder,k

Time Update

g1k = AZpp + Buy,
Peiar = AP AT + Q

Measurement Update

U1k = CTpt)k
Pmy,k+l|k = Pk—l—l\kCT
Pyiir = CPepCT + R
Try1fks1 = Trrae + ny,k+1|kpyjk+1|k(yk = Ukt1jk)

. -1 T
Pk+1|k+1 = sz+1\k - P:cy,kJrl\kpyy,k\k+1pmy,k+1lk
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14.2 Three Wheels Omnidrive Robot Sensor Fusion for

Linear and Angular Velocity

We have a model:
Ve = Gimu—z + by
Vy = Qimu—y + by
b, =0
by, =0
Let:
v =V, = &1 =V = Gimu—s + by
xgz‘/y—>:i:2:%:aimu_y+by
T3 =0b, = L3 =0b, =0
x4:by—>9t4zby20
Discretized the model:
T1jkt1 = Tk + Qimu—z s + by T
T2 ki1 = T2k + Qimu—yLs + 0y T

T3 k+1 = T3k

Tak+1 = T4k

T1k4+1 = L1k + aimu—st + x?),kTs
T2 k+1 = Lok + aimufyTs + 'T4,kTs
T3 k+1 = T3k

T4 k41 = T4k

In state space form, we have a model:

V;c T 1 0 Ts 0 T Ts 0
‘/;/ |2 . 0 1 0 TS T + 0 TS Qimauy—2x
bx o T3 o 0 0 1 0 T3 0 0 Aimu—y
by ], T Ta] i 0 0 0 I EZY N 0 0
We have a output model:
I Vi
1 0 0 Of|azl (T 0 O Vy
=10 1 0 o |xs| "0 1 0 by
Ty k by
Check observability:
obs ¢
- |CA

(14.16)

(14.17)

(14.18)
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We have:
1 0 T, 0
0 1 0 T, |1 0 0 0
A=l 0o 1 o0 andc_{o 10 0}
0 0 0 1
1 0 0 0
0 1 0 0] .
— obs = 1 0 T 0 is full rank = observable.
0 1 0 1
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