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Chapter 1

Mobile Robot Kinematic

Kinematic is the study of position, velocity, acceleration of object in space without con-
sidering the forces that cause them to move. In mobile robot kinematic, we are interested
in where is the location of robot in place and where is it facing.

1.1 Differential Drive Mobile Robot Kinematic

One of the most simple design robot and widely use is a type called Differential Drive.
Our interest in this study is to know where is its location in space and at what time. And
thus, we need to determine x = [x, y, z]T .
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Figure 1.1: Differential Drive Robot

From the figure, we have:

ω =
v

R

ω =
vl

R− l/2

ω =
vr

R + l/2

(1.1)
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Find ω in term of vr and vl:

R =
vl
ω

+
l

2

R =
vr
ω

− l

2
vl
ω

+
l

2
=

vr
ω

− l

2

ω =
vr − vl

l

(1.2)

Find R
vl

R− l/2
=

vr
R + l/2

vr(R− l/2) = vl(R + l/2)

R =
vr + vl
vr − vl

l

2

(1.3)

Find v in term of vr and vl:

v = ωR =
vr − vl

l

vr + vl
vr − vl

l

2

v =
vr + vl

2

(1.4)

Relation of v, ω with ωl, ωr

We can have v and ω in term of each wheel rotational speed ωr and ωl :

v = ωr
r

2
+ ωl

r

2

ω = ωr
r

l
− ωl

r

l

(1.5)

We can have ωr and ωl in term of v and ω :

ωr =
2v + lω

2r

ωl =
2v − lω

2r

(1.6)

We have our internal kinematicẋẏ
θ̇

 =

 r
2

r
2

0 0
r
l

− r
l

[
ωr

ωl

]
(1.7)

You may think why is that y component doesn’t have any element, because it’s due to
nonholonomic constraint. The robot could only move in x direction and rotate around z
of its local frame.

We have our external kinematicẋẏ
θ̇

 =

cos θ 0
sin θ 0
0 1

[
v
ω

]
(1.8)
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1.2 Forward Kinematic
We have our kinematic ẋẏ

θ̇

 =

v cos θv sin θ
ω

 (1.9)

We can determine the pose of robot by integral the equation. There are more ways to do
the integral:

1.2.1 Euler Approximation

This is for assume v and ω are constant for Ts is constant.
Euler Approximation Descretizationxy

θ


k

=

xk−1 + vk−1 cos θk−1Ts

yk−1 + vk−1 sin θk−1Ts

θk−1 + ωk−1Ts

 (1.10)

1.2.2 Trapezoidal

Trapezoidal Descretizationxy
θ


k

=

xk−1 + vk−1 cos(θk−1 +
ωk−1Ts

2
)Ts

yk−1 + vk−1 sin(θk−1 +
ωk−1Ts

2
)Ts

θk−1 + ωk−1Ts

 (1.11)

1.3 Inverse Kinematic
In mobile robot, there isn’t exact solution to drive robot from its current pose to desired
pose. There are multiple ways to control the robot. The inverse kinematic problem for
desired smooth target trajectory x(t), y(t) that robot will follow the trajectory while its
orientation is tangent to trajectory. Trajectory is a robot’s configuration point in time.
There are many type of trajectories, such as point, line, equation with function of time
-etc. We want the robot to run smoothly so, the trajectory must be smooth as well.
Which mean it must have velocity and acceleration define.

Reference Trajectory Velocity

Calculate v desired linear forward velocity

v(t) = ±
√
ẋ2(t) + ẏ2(t) (1.12)

Calculate ω desired angular velocity

ω(t) =
ẋ(t)ÿ(t)− ẏ(t)ẍ(t)

ẋ2(t) + ẏ2(t)
(1.13)
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Figure 1.2: Inverse Kinematic Trajectory

In inverse kinematic for mobile robot, we want to calculate each wheel velocity to
control each wheel to follow along the trajectory. In this part, it is usually used for
determine the feedforward part of control supplementary to the feedback. Feedback part
will take care of imperfect kinematic model, disturbances and initial pose.

1.4 Controllability
Can a robot moves from point A to point B using all the maneuver it has ?. We say it is
controllable if it can reach any configuration q by combine all available motion that it can
do. Because the differential drive robot is a nonholonomic system can it be control ? we
can proof that it is controllable using Lie Bracket Algebra. If the det(p1, p2, [p1, p2]) is
not zero than we say it is controllable.

Lie Bracket Algebra

[p1, p2] =
∂p2
∂q

p1 −
∂p1
∂q

p2

Differential Drive We have:ẋẏ
θ̇

 =

cosθ 0
sinθ 0
0 1

[
v
ω

]

We get:

p1 =

cosθsinθ
0

 , p2 =

00
1

 , [p1, p2] =

 sinθ
−cosθ

0


Thus we can proof that the robot is controllable by:

det

cosθ 0 sinθ
sinθ 0 −cosθ
0 1 0

 = 1



Chapter 2

Mobile Robot Dynamic

Mobile robot is a dynamics system. Using solely the kinematic model of the system is not
enough to represent the system as a whole. For the robustness of the robot, the dynamics
properties of the system such as external force, mass, inertia are considered.

2.1 Differential Drive Mobile Robot Dynamic

Lagrangain Formula

The dynamics model of the robot with constraint is derived using Lagrange formu-
lation:

∂

∂t
(
∂L
∂q̇k

)− ∂L
∂qk

+
∂P

∂q̇k
+ gk + τdk = fk −

m∑
j=1

λjajk (2.1)

Where:

• L is the Lagrangian

• P is the power dissipation function due to friction and damping

• gk are the forces due to gravitation

• τdk are the system disturbances

• fk are the general forces (external influences to the system)

• qk general coordinate k=(1,...,n)

• m is the number of linearly independent motion constraint

• λj is the Lagrange multiplier associated with the jth constraint relation

• ajk is coefficients of the constraints (j=1,...,n)
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Assumption:

• Wp = 0, planar robot where the potential energy is constant

• gk = 0, planar robot where the potential energy is constant

• τdk = 0, no outside disturbances

The Lagrangian L is the difference between kinetic energy and potential energy. We
get:

L = Wk −Wp (2.2)

The Kinetic energy equation is:

Wk =
1

2
mV 2 +

1

2
Jθ̇2 (2.3)

The velocity in the 2D plane is:
V 2 = ẋ2 + ẏ2 (2.4)

We get the Lagrangian L:

L =
m

2
(ẋ2 + ẏ2) +

J

2
θ̇2 (2.5)

Substitute back to Equation 2.1, we get:

∂

∂t
(
∂L
∂ẋ

) = mẍ

∂

∂t
(
∂L
∂ẏ

) = mÿ

∂

∂t
(
∂L
∂θ̇

) = Jθ̈

∂L
∂x

= 0

∂L
∂y

= 0

∂L
∂θ

= 0

The mobile robot constraint in x-axis is −sinθ, in y-axis is cosθ.
From Equation 2.1, we obtain:

mẍ = Fx − λ1(−sinθ)

mÿ = Fy − λ1(cosθ)

Jθ̈ = Mz

(2.6)

We get:

mẍ− λ1sinθ = Fx

mÿ + λ1cosθ = Fy

Jθ̈ = Mz

(2.7)
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Since the assumption of no outside disturbance force, the force acting on the robot are
the left wheel force Fl and the right wheel force Fr. The resultant for is:

F = Fr + Fl (2.8)

We have:

Fr =
τr
r

Fl =
τl
r

(2.9)

And
Fx = Fcosθ

Fy = Fsinθ

Mz = Fr
l

2
− Fl

l

2

(2.10)

We get:

Fx =
1

r
(τr + τl)cosθ

Fy =
1

r
(τr + τl)sinθ

Mz =
l

2r
(τr − τl)

(2.11)

We get:

mẍ− λsinθ − 1

r
(τr + τl)cosθ = 0

mÿ + λcosθ − 1

r
(τr + τl)sinθ = 0

Jθ̈ − l

2r
(τr − τl) = 0

(2.12)

Rewrite the equation into Matrix form of:

M(q)q̈ + V (q, q̇) + F (q̇) = E(q)u− AT (q)λ

We get:

M =

m 0 0
0 m 0
0 0 J

 , E =
1

r

cosθ cosθ
sinθ sinθ

l
2

− l
2

 , A =
[
−sinθ cosθ 0

]
, u =

[
τr
τl

]
Where remain are Zero.

Dynamic Model

The model is 
ẋ
ẏ

θ̇

V̇
ω̇

 =


V cosθ
V sinθ

ω
0
0

+


0 0
0 0
0 0
1
mr

1
mr

l
2Jr

− l
2Jr


[
τr
τl

]
(2.13)

[
τr
τl

]
=

[
v̇mr
2

+ ω̇Jr
l

v̇mr
2

− ω̇Jr
l

]
(2.14)
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